Journal of Scientific Computing

, Volume 46, Issue 2, pp 151–165 | Cite as

Discontinuous Galerkin Methods for Second-Order Elliptic PDE with Low-Regularity Solutions



In this paper we derive an a priori error analysis for interior penalty discontinuous Galerkin finite element discretizations of the Poisson equation with exact solution in W 2,p , p∈(1,2]. We show that the DGFEM converges at an optimal algebraic rate with respect to the number of degrees of freedom.


Elliptic PDE Discontinuous Galerkin methods Low regularity solutions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, Amsterdam (2003) MATHGoogle Scholar
  2. 2.
    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Baumann, C.E., Oden, J.T.: A discontinuous hp-finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 175, 311–341 (1999) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Texts in Applied Mathematics, vol. 15. Springer, New York (2008) MATHCrossRefGoogle Scholar
  6. 6.
    Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40. SIAM, Philadelphia (2002) Google Scholar
  8. 8.
    Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Math., vol. 1341. Springer, Berlin (1988) MATHGoogle Scholar
  9. 9.
    Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193(23–26), 2565–2580 (2004) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Di Pietro, D.A., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comput. 79, 1303–1330 (2010) MATHCrossRefGoogle Scholar
  11. 11.
    Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1988). Reprint of the 1952 edition MATHGoogle Scholar
  12. 12.
    Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for advection–diffusion–reaction problems. SIAM J. Numer. Anal. 39, 2133–2163 (2002) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, vol. 23. Springer, Berlin (2008) MATHGoogle Scholar
  14. 14.
    Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation. Frontiers in Applied Mathematics. SIAM, Philadelphia (2008) MATHGoogle Scholar
  15. 15.
    Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902–931 (2001) (electronic) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Schötzau, D., Wihler, T.P.: Exponential convergence of mixed hp-DGFEM for Stokes flow in polygons. Numer. Math. 96, 339–361 (2003) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Wheeler, M.F.: An elliptic collocation finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Wihler, T.P.: Discontinuous Galerkin FEM for elliptic problems in polygonal domains. PhD thesis, Swiss Federal Institute of Technology Zurich (2002). Diss. ETH No. 14973 Google Scholar
  20. 20.
    Wihler, T.P.: Locking-free DGFEM for elasticity problems in polygons. IMA J. Numer. Anal. 24(1), 45–75 (2004) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Wihler, T.P., Frauenfelder, P., Schwab, C.: Exponential convergence of the hp-DGFEM for diffusion problems. Comput. Math. Appl. 46, 183–205 (2003) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Mathematics InstituteUniversity of BernBernSwitzerland
  2. 2.Computational and Applied Mathematics DepartmentRice UniversityHoustonUSA

Personalised recommendations