Journal of Scientific Computing

, Volume 44, Issue 3, pp 255–285 | Cite as

Composite Laguerre-Legendre Spectral Method for Fourth-Order Exterior Problems

  • Ben-Yu Guo
  • Tian-Jun Wang


In this paper, we investigate composite Laguerre-Legendre spectral method for fourth-order exterior problems. Some results on composite Laguerre-Legendre approximation are established, which is a set of piecewise mixed approximations coupled with domain decomposition. These results play an important role in spectral method for fourth-order exterior problems with rectangle obstacle. As examples of applications, composite spectral schemes are provided for two model problems, with convergence analysis. Efficient algorithms are implemented. Numerical results demonstrate their high accuracy, and confirm theoretical analysis well.


Composite Laguerre-Legendre approximation Spectral method for fourth order exterior problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods, Fundamentals in Single Domains. Springer, Berlin (2006) MATHGoogle Scholar
  2. 2.
    Coulaud, O., Funaro, D., Kavian, O.: Laguerre spectral approximation of elliptic problems in exterior domains. Comput. Mech. Appl. Mech. Eng. 80, 451–458 (1990) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Funaro, D.: Polynomial Approximations of Differential Equations. Springer, Berlin (1992) Google Scholar
  4. 4.
    Funaro, D., Kavian, O.: Approximation of some diffusion evolution equation in unbounded domains by Hermite function. Math. Comput. 57, 597–619 (1999) MathSciNetGoogle Scholar
  5. 5.
    Guo, B.-Y.: Error estimation of Hermite spectral method for nonlinear partial differential equations. Math. Comput. 68, 1067–1078 (1999) MATHCrossRefGoogle Scholar
  6. 6.
    Guo, B.-Y., Jiao, Y.-J.: Mixed Generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete Continuous Dyn. Syst. B 11, 315–345 (2009) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Guo, B.-Y., Shen, J.: Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval. Numer. Math. 86, 635–654 (2000) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Guo, B.-Y., Wang, L.-L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1–41 (2004) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Guo, B.-Y., Wang, T.-J.: Composite generalized Laguerre-Legendre spectral method with domain decomposition and its application to Fokker-Planck equation in an finite channel. Math. Comput. 78, 129–151 (2009) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Guo, B.-Y., Wang, T.-J.: Composite Laguerre-Legendre spectral method for exterior problems. Adv. Comput. Math. 32, 393–429 (2010) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Guo, B.-Y., Xu, C.-L.: Mixed Laguerre-Legendre pseodospectral method for incompressible fluid flow in an infinite strip. Math. Comput. 72, 95–125 (2003) MathSciNetGoogle Scholar
  12. 12.
    Guo, B.-Y., Zhang, X.-Y.: A new generalized Laguerre approximation and its applications. J. Comput. Appl. Math. 181, 342–363 (2005) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Guo, B.-Y., Zhang, X.-Y.: Spectral method for differential equations of degenerate type by using generalized Laguerre functions. Appl. Numer. Math. 57, 455–471 (2007) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Guo, B.-Y., Shen, J., Xu, C.-L.: Generalized Laguerre approximation and its applications to exterior problems. J. Comput. Math. 23, 113–130 (2005) MATHMathSciNetGoogle Scholar
  15. 15.
    Guo, B.-Y., Wang, Z.-Q., Wan, Z.-S., Chu, D.: Second order Jacobi approximations with applications to fourth-order differential equations. Appl. Num. Math. 55, 480–502 (2005) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Maday, Y., Pernaud-Thomas, B., Vandeven, H.: Oneréhabilitation des méthods spèctrales de type Laguerre. Rech. Aérosp. 6, 353–379 (1985) MathSciNetGoogle Scholar
  17. 17.
    Shen, J.: Efficient spectral-Galerkin method I, Direct solvers of second and fourth order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shen, J.: Stable and efficient spectral methods in unbounded domains using Laguerre functions. SIAM J. Numer. Anal. 38, 1113–1133 (2000) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Shen, J., Wang, L.-L.: Some recent advances on spectral methods for unbounded domains. Commun. Comput. Phys. 5, 159–241 (2009) MathSciNetGoogle Scholar
  20. 20.
    Zhang, X.-Y., Guo, B.-Y.: Spherical harmonic-generalized Laguerre spectral method for exterior problems. J. Sci. Comput. 27, 305–322 (2006) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Scientific Computing Key Laboratory of Shanghai UniversitiesShanghaiChina
  3. 3.Computational Division of Computational Science of E-Institute of Shanghai UniversitiesShanghaiChina
  4. 4.Department of Mathematics and PhysicsHenan University of Science and TechnologyLuoYangChina

Personalised recommendations