Advertisement

A Coupled Legendre-Laguerre Spectral-Element Method for the Navier-Stokes Equations in Unbounded Domains

  • Qingqu Zhuang
  • Jie Shen
  • Chuanju Xu
Article

Abstract

A coupled Legendre-Laguerre spectral element method is proposed for the Stokes and Navier-Stokes equations in unbounded domains. The method combines advantages of the high accuracy of the Laguerre-spectral method for unbounded domains and the geometric flexibility of the spectral-element method. Rigorous stability and error analysis for the Stokes problem is carried out. Numerical results indicate that the proposed method is very effective for some realistic flow problems in unbounded domains, such as flows passing a circular cylinder.

Keywords

Laguerre functions Legendre polynomials Navier-Stokes equations Stokes equations Inf-sup condition Error analysis Spectral element Computational fluid dynamics 

References

  1. 1.
    Azaiez, M., Shen, J., Xu, C., Zhuang, Q.: A Laguerre-Legendre spectral method for the Stokes problem in a semi-infinite channel. SIAM J. Numer. Anal. 47(1), 271–292 (2008) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bernardi, C., Maday, Y.: Approximations Spectrales de Problèmes aux Limites Elliptiques. Springer, Berlin (1992) MATHGoogle Scholar
  3. 3.
    Boyd, J.P.: Rational Chebyshev spectral methods for unbounded solutions on an infinite interval using polynomial-growth special basis functions. Comput. Math. Appl. 41, 1293–1315 (2001) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Fr. Autom. Informat. Rech. Opér. Sér. Rouge 8(R-2), 129–151 (1974) MathSciNetGoogle Scholar
  5. 5.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1987) Google Scholar
  6. 6.
    Couzy, W., Deville, M.O.: A fast schur complement method for the spectral element discretization of the incompressible Navier-Stokes equations. J. Comput. Phys. 116, 135–142 (1995) MATHCrossRefGoogle Scholar
  7. 7.
    Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow. Cambridge Monographs on Applied and Computational Mathematics, vol. 9. Cambridge University Press, Cambridge (2002) MATHGoogle Scholar
  8. 8.
    Funaro, D.: Polynomial Approximations of Differential Equations. Springer, Berlin (1992) Google Scholar
  9. 9.
    Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Guo, B.-Y., Wang, L.-L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128(1), 1–41 (2004) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Guo, B.-Y., Wang, L.-L., Wang, Z.-Q.: Generalized Laguerre interpolation and pseudospectral method for unbounded domains. SIAM J. Numer. Anal. 43(6), 2567–2589 (2006) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lin, Y., Xu, C.: A fractional step method for the time dependent incompressible Navier-Stokes/Euler coupled equations. Acta Aerodyn. Sin. 21(3), 368–376 (2003) MathSciNetGoogle Scholar
  13. 13.
    Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial differential equations by tensor product methods. Numer. Math. 6, 185–199 (1964) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Maday, Y., Patera, A.T., Rønquist, E.M.: An operator integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5, 263–292 (1990) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Maday, Y., Meiron, D., Patera, A.T., Rønquist, E.M.: Analysis of iterative methods for the steady and unsteady Stokes problem: application to spectral element discretizations. SIAM J. Sci. Comput. 14(2), 310–337 (1993) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Perot, J.B.: An analysis of the fractional step method. J. Comput. Phys. 108, 51–58 (1993) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Shen, J.: Stable and efficient spectral methods in unbounded domains using Laguerre functions. SIAM J. Numer. Anal. 38(4), 1113–1133 (2000) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shen, J., Wang, L.-L.: Some recent advances on spectral methods for unbounded domains. Commun. Comput. Phys. 5, 195–241 (2009) MathSciNetGoogle Scholar
  19. 19.
    Xu, C., Pasquetti, R.: On the efficiency of semi-implicit and semi-Lagrangian spectral methods for the calculation of incompressible flows. Int. J. Numer. Methods Fluids 35, 319–340 (2001) MATHCrossRefGoogle Scholar
  20. 20.
    Xu, C., Lin, Y.: A numerical comparison of outflow boundary conditions for spectral element simulations of incompressible flows. Commun. Comput. Phys. 2, 477–500 (2007) MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Mathematical SciencesXiamen UniversityXiamenChina
  2. 2.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations