Advertisement

Error Estimation of a Class of Stable Spectral Approximation to the Cahn-Hilliard Equation

  • Li-ping He
Article

Abstract

In this work, the initial-boundary value problem of two-dimensional Cahn-Hilliard equation is considered. A class of fully discrete dissipative Fourier spectral schemes are proposed. The existence of the numerical solution is proved by a series of a priori estimations and the Brower fixed point theorem. The uniqueness of the numerical solution is discussed. The optimal converge rate is obtained by the energy method. The numerical simulations are performed to demonstrate the effectiveness of the proposed schemes.

Keywords

Cahn-Hilliard equation Stable spectral schemes Existence Uniqueness Convergence 

References

  1. 1.
    Barrett, J.W., Blowey, J.F., Garcke, H.: On fully practical finite element approximations of degenerate Cahn-Hilliard systems. Model. Math. Numer. Anal. 35, 713–748 (2001) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2001) MATHGoogle Scholar
  3. 3.
    Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform system I: interfacial free energy. J. Chem. Phys. 28, 258–267 (1958) CrossRefGoogle Scholar
  4. 4.
    Chen, L.Q., Shen, J.: Application of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108, 147–158 (1998) MATHCrossRefGoogle Scholar
  5. 5.
    Cheng, M., Warren, J.A.: An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 227, 6241–6248 (2008) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Copetti, M.I.M., Elliot, C.M.: Kinetics of phase decomposition processes: numerical solutions to Cahn-Hilliard equation. Mater. Sci. Technol. 6, 273–283 (1990) Google Scholar
  7. 7.
    Elliot, C.M., French, D.A.: Numerical studies of the Cahn-Hilliard equation for phase separation. IMA J. Appl. Math. 38, 97–128 (1987) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Elliot, C.M., French, D.A.: A nonconforming finite element method for the two dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal. 26, 884–903 (1989) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Elliot, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation for phase separation. Math. Comput. 58, 603–630 (1992) CrossRefGoogle Scholar
  10. 10.
    Elliot, C.M., French, D.A., Milner, D.A.: A second order splitting method for the Cahn-Hilliard equation. Numer. Math. 54, 575–590 (1989) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Eyre, D.J.: In: Bullard, J.W., et al. (eds.) Computational and Mathematical Models of Microstructural Evolution, pp. 39–46. Materials Research Society, Warrendale (1998) Google Scholar
  12. 12.
  13. 13.
    Feng, X.B., Prohl, A.: Error analysis of a mixed finite element method for the Cahn-Hilliard equation. Numer. Math. 99, 47–84 (2004) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Feng, W.M., Yu, P., Hu, S.Y., Liu, Z.K., Du, Q., Chen, L.Q.: A Fourier spectral moving mesh method for the Cahn-Hilliard equation with elasticity. Commun. Comput. Phys. 5, 582–599 (2009) MathSciNetGoogle Scholar
  15. 15.
    Furihata, D.: A stable and conservative finite difference scheme for the Cahn-Hilliard equation. Numer. Math. 87, 675–699 (2001) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gurtin, M.E.: On the two-phase Stephan problem with interfacial energy and entrop. Arch. Ration. Mech. Anal. 96, 199–243 (1988) MathSciNetGoogle Scholar
  17. 17.
    He, L.-P., Mao, D.-K., Guo, B.-Y.: Prediction-correction Legendre spectral scheme for incompressible fluid flow. Model. Math. Numer. Anal. 33, 113–120 (1999) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    He, L.-P., Liu, Y.X.: A class of stable spectral methods for the Cahn-Hilliard equation. J. Comput. Phys. 228, 5101–5110 (2009) MATHCrossRefGoogle Scholar
  19. 19.
    He, Y.N., Liu, Y.X.: Stability and convergence of the spectral Galerkin method for the Cahn-Hilliard equation. Numer. Methods Partial Differ. Equ. 24, 1485–1500 (2008) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    He, Y.N., Liu, Y.X., Tang, T.: On large time-stepping methods for the Cahn-Hilliard equation. Appl. Numer. Math. 57, 616–628 (2007) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Mello, E.V.L., Filho, O.T.S.: Numerical study of the Cahn-Hilliard equation in one, two and three dimensions. Physica A 347, 429–443 (2005) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Pego, R.L.: Front migration in the nonlinear Cahn-Hilliard equation. Proc. R. Soc. Lond. A 422, 261–278 (1989) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Shen, J., Wang, L.-L.: Some recent advances on spectral methods for unbounded domains. Commun. Comput. Phys. 5, 195–241 (2009) MathSciNetGoogle Scholar
  24. 24.
    Sun, Z.Z.: A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation. Math. Comput. 64, 1463–1471 (1995) MATHCrossRefGoogle Scholar
  25. 25.
    Vollmayr-Lee, B.P., Rutenberg, A.D.: Fast and accurate coarsening simulation with an unconditionally stable time step. Phys. Rev. E 68, 0066703 (2003) CrossRefGoogle Scholar
  26. 26.
    Wang, Y., Chen, L.-Q., Khachaturyan, A.G.: Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap. Acta Metall. Mater. 41, 279–296 (1993) CrossRefGoogle Scholar
  27. 27.
    Xiu, D., Shen, J.: An efficient spectral method for acoustic scattering from rough surfaces. Commun. Comput. Phys. 1, 54–72 (2007) MathSciNetGoogle Scholar
  28. 28.
    Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Zhu, J., Chen, L.-Q., Shen, J., Tikare, V.: Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method. Phys. Rev. E 60, 3564–3572 (1999) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Jiaotong UniversityShanghaiP.R. China

Personalised recommendations