Skip to main content
Log in

A Sixth-order Image Approximation to the Ionic Solvent Induced Reaction Field

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A recent article by Deng and Cai introduced fourth-order image approximations to the reaction field for a charge inside a dielectric sphere immersed in a solvent of low ionic strength (J. Comput. Phys. 227:1246–1266, 2007). To represent such a reaction field, the image approximations employ a point charge at the classical Kelvin image point and two line charges that extend from the Kelvin image point along the radial direction to infinity. In this paper, a sixth-order image approximation is developed, using the same point charge with three different line charges. Procedures on how to discretize the line charges by point image charges and how to implement the resulting point image approximation in O(N) complexity for potential and force field calculations are included. Numerical results demonstrate the sixth-order convergence rate of the image approximation and the O(N) complexity of the fast implementation of the point image approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972)

    MATH  Google Scholar 

  2. Cai, W., Deng, S., Jacobs, D.: Extending the fast multipole method to charges inside or outside a dielectric sphere. J. Comput. Phys. 223, 846–864 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Carrier, J., Greengard, L.F., Rokhlin, V.: A fast adaptive multipole algorithm for particle simulations. SIAM J. Sci. Stat. Comput. 9, 669–686 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cheng, H., Greengard, L.F., Roklin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155, 468–498 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Deng, S., Cai, W.: Discrete image approximations of ionic solvent induced reaction field to charges. Commun. Comput. Phys. 2, 1007–1026 (2007)

    Google Scholar 

  6. Deng, S., Cai, W.: Extending the fast multipole method for charges inside a dielectric sphere in an ionic solvent: High-order image approximations for reaction fields. J. Comput. Phys. 227, 1246–1266 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Esselink, L.: A comparison of algorithms for long-range interactions. Comput. Phys. Commun. 87, 375–395 (1995)

    Article  Google Scholar 

  8. Gautschi, W.: Algorithm 726: ORTHPOL—a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Softw. 20, 21–62 (1994)

    Article  MATH  Google Scholar 

  9. Gradshteyn, I.S., Ayzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, Boston (1994)

    MATH  Google Scholar 

  10. Greengard, L.F.: The Rapid Evaluation of Potential Fields in Particle Systems. MIT, Cambridge (1987)

    Google Scholar 

  11. Greengard, L.F., Huang, J.: A new version of the fast multipole method for screened Coulomb interactions in three dimensions. J. Comput. Phys. 180, 642–658 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Greengard, L.F., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Greengard, L.F., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6, 229–269 (1997)

    Article  MathSciNet  Google Scholar 

  14. Juffer, A., Botta, E.F.F., van Keulen, B.A.M., van der Ploeg, A., Berendsen, H.J.C.: The electric potential of a macromolecule in a solvent: A fundamental approach. J. Comput. Phys. 97, 144–171 (1991)

    Article  MATH  Google Scholar 

  15. Lee, M.S., Olson, M.A.: Evaluation of Poisson solvation models using a hybrid explicit/implicit solvent method. J. Phys. Chem. B 109, 5223–5236 (2005)

    Article  Google Scholar 

  16. Lee, M.S., Salsbury, Jr. F.R., Olson, M.A.: An efficient hybrid explicit/implicit solvent method for biomolecular simulations. J. Comput. Chem. 25, 1967–1978 (2004)

    Article  Google Scholar 

  17. Lindell, I.V.: Electrostatic image theory for the dielectric sphere. Radio Sci. 27, 1–8 (1992)

    Google Scholar 

  18. Lu, B., Cheng, X., McCammon, J.A.: New-version-fast-multipole-method accelerated electrostatic calculations in biomolecular systems. J. Comput. Phys. 226, 1348–1366 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  20. Neumann, C.: Hydrodynamische Untersuchen nebst einem Anhang uber die Probleme der Elecktrostatik und der magnetischen Induktion. Teubner, Leipzig, pp. 279–282 (1883)

  21. Norris, W.T.: Charge images in a dielectric sphere. IEE Proc. Sci. Meas. Technol. 142, 142–150 (1995)

    Article  Google Scholar 

  22. Okur, A., Simmerling, C.: Hybrid explicit/implicit solvation methods. In: Spellmeyer, D. (ed.) Annu. Rep. Comput. Chem., vol. 2, chap. 6 (2006)

  23. Phillips, J.R., White, J.K.: A precorrected-FFT method for electrostatic analysis of complicated 3-D structures. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 10, 1059–1072 (1997)

    Article  Google Scholar 

  24. Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196, 591–626 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaozhong Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, M., Deng, S. & Cai, W. A Sixth-order Image Approximation to the Ionic Solvent Induced Reaction Field. J Sci Comput 41, 411–435 (2009). https://doi.org/10.1007/s10915-009-9307-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9307-z

Keywords

Navigation