A Sixth-order Image Approximation to the Ionic Solvent Induced Reaction Field



A recent article by Deng and Cai introduced fourth-order image approximations to the reaction field for a charge inside a dielectric sphere immersed in a solvent of low ionic strength (J. Comput. Phys. 227:1246–1266, 2007). To represent such a reaction field, the image approximations employ a point charge at the classical Kelvin image point and two line charges that extend from the Kelvin image point along the radial direction to infinity. In this paper, a sixth-order image approximation is developed, using the same point charge with three different line charges. Procedures on how to discretize the line charges by point image charges and how to implement the resulting point image approximation in O(N) complexity for potential and force field calculations are included. Numerical results demonstrate the sixth-order convergence rate of the image approximation and the O(N) complexity of the fast implementation of the point image approximation.


Method of images Reaction field Ionic solvent Hybrid solvation model 


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972) MATHGoogle Scholar
  2. 2.
    Cai, W., Deng, S., Jacobs, D.: Extending the fast multipole method to charges inside or outside a dielectric sphere. J. Comput. Phys. 223, 846–864 (2007) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carrier, J., Greengard, L.F., Rokhlin, V.: A fast adaptive multipole algorithm for particle simulations. SIAM J. Sci. Stat. Comput. 9, 669–686 (1988) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cheng, H., Greengard, L.F., Roklin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155, 468–498 (1999) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Deng, S., Cai, W.: Discrete image approximations of ionic solvent induced reaction field to charges. Commun. Comput. Phys. 2, 1007–1026 (2007) Google Scholar
  6. 6.
    Deng, S., Cai, W.: Extending the fast multipole method for charges inside a dielectric sphere in an ionic solvent: High-order image approximations for reaction fields. J. Comput. Phys. 227, 1246–1266 (2007) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Esselink, L.: A comparison of algorithms for long-range interactions. Comput. Phys. Commun. 87, 375–395 (1995) CrossRefGoogle Scholar
  8. 8.
    Gautschi, W.: Algorithm 726: ORTHPOL—a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Softw. 20, 21–62 (1994) MATHCrossRefGoogle Scholar
  9. 9.
    Gradshteyn, I.S., Ayzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, Boston (1994) MATHGoogle Scholar
  10. 10.
    Greengard, L.F.: The Rapid Evaluation of Potential Fields in Particle Systems. MIT, Cambridge (1987) Google Scholar
  11. 11.
    Greengard, L.F., Huang, J.: A new version of the fast multipole method for screened Coulomb interactions in three dimensions. J. Comput. Phys. 180, 642–658 (2002) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Greengard, L.F., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Greengard, L.F., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6, 229–269 (1997) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Juffer, A., Botta, E.F.F., van Keulen, B.A.M., van der Ploeg, A., Berendsen, H.J.C.: The electric potential of a macromolecule in a solvent: A fundamental approach. J. Comput. Phys. 97, 144–171 (1991) MATHCrossRefGoogle Scholar
  15. 15.
    Lee, M.S., Olson, M.A.: Evaluation of Poisson solvation models using a hybrid explicit/implicit solvent method. J. Phys. Chem. B 109, 5223–5236 (2005) CrossRefGoogle Scholar
  16. 16.
    Lee, M.S., Salsbury, Jr. F.R., Olson, M.A.: An efficient hybrid explicit/implicit solvent method for biomolecular simulations. J. Comput. Chem. 25, 1967–1978 (2004) CrossRefGoogle Scholar
  17. 17.
    Lindell, I.V.: Electrostatic image theory for the dielectric sphere. Radio Sci. 27, 1–8 (1992) Google Scholar
  18. 18.
    Lu, B., Cheng, X., McCammon, J.A.: New-version-fast-multipole-method accelerated electrostatic calculations in biomolecular systems. J. Comput. Phys. 226, 1348–1366 (2007) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953) MATHGoogle Scholar
  20. 20.
    Neumann, C.: Hydrodynamische Untersuchen nebst einem Anhang uber die Probleme der Elecktrostatik und der magnetischen Induktion. Teubner, Leipzig, pp. 279–282 (1883) Google Scholar
  21. 21.
    Norris, W.T.: Charge images in a dielectric sphere. IEE Proc. Sci. Meas. Technol. 142, 142–150 (1995) CrossRefGoogle Scholar
  22. 22.
    Okur, A., Simmerling, C.: Hybrid explicit/implicit solvation methods. In: Spellmeyer, D. (ed.) Annu. Rep. Comput. Chem., vol. 2, chap. 6 (2006) Google Scholar
  23. 23.
    Phillips, J.R., White, J.K.: A precorrected-FFT method for electrostatic analysis of complicated 3-D structures. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 10, 1059–1072 (1997) CrossRefGoogle Scholar
  24. 24.
    Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196, 591–626 (2004) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of North Carolina at CharlotteCharlotteUSA

Personalised recommendations