Journal of Scientific Computing

, Volume 40, Issue 1–3, pp 51–85

# Nonconforming Maxwell Eigensolvers

Article

## Abstract

Three Maxwell eigensolvers are discussed in this paper. Two of them use classical nonconforming finite element approximations, and the other is an interior penalty type discontinuous Galerkin method. A main feature of these solvers is that they are based on the formulation of the Maxwell eigenproblem on the space H 0(curl;Ω)∩H(div0;Ω). These solvers are free of spurious eigenmodes and they do not require choosing penalty parameters. Furthermore, they satisfy optimal order error estimates on properly graded meshes, and their analysis is greatly simplified by the underlying compact embedding of H 0(curl;Ω)∩H(div0;Ω) in L 2(Ω). The performance and the relative merits of these eigensolvers are demonstrated through numerical experiments.

## Keywords

Maxwell eigenvalues Nonconforming finite element method Interior penalty method Spurious eigenvalues

## References

1. 1.
Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)
2. 2.
Assous, F., Ciarlet, P. Jr., Sonnendrücker, E.: Resolution of the Maxwell equation in a domain with reentrant corners. Math. Model. Numer. Anal. 32, 359–389 (1998)
3. 3.
Babuška, I., Osborn, J.: Eigenvalue Problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis II, pp. 641–787. North-Holland, Amsterdam (1991) Google Scholar
4. 4.
Boffi, D.: Fortin operators and discrete compactness for edge elements. Numer. Math. 87, 229–246 (2000)
5. 5.
Boffi, D., Fernandes, P., Gastaldi, L., Perugia, I.: Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36, 1264–1290 (1999)
6. 6.
Boffi, D., Kikuchi, F., Schöberl, J.: Edge element computation of Maxwell’s eigenvalues on general quadrilateral meshes. Math. Models Methods Appl. Sci. 16, 265–273 (2006)
7. 7.
Brenner, S.C., Cui, J., Li, F., Sung, L.-Y.: A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem. Numer. Math. 109, 509–533 (2008)
8. 8.
Brenner, S.C., Li, F., Sung, L.-Y.: A locally divergence-free nonconforming finite element method for the reduced time-harmonic Maxwell equations. Math. Comput. 76, 573–595 (2007)
9. 9.
Brenner, S.C., Li, F., Sung, L.-Y.: A locally divergence-free interior penalty method for two-dimensional curl-curl problems. SIAM J. Numer. Anal. 46, 1190–1211 (2008)
10. 10.
Brenner, S.C., Li, F., Sung, L.-Y.: A nonconforming penalty method for two dimensional curl-curl problems. Math. Models Methods Appl. Sci. (to appear) Google Scholar
11. 11.
Brenner, S.C., Sung, L.-Y.: A quadratic nonconforming vector finite element for H(curl;Ω)∩H(div;Ω). Appl. Math. Lett. doi:
12. 12.
Buffa, A., Houston, P., Perugia, I.: Discontinuous Galerkin computation of the Maxwell eigenvalues on simplical meshes. J. Comput. Appl. Math. 204, 317–333 (2007)
13. 13.
Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44, 2198–2226 (2006)
14. 14.
Caorsi, S., Fernandes, P., Raffetto, M.: On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38, 580–607 (2000)
15. 15.
Caorsi, S., Fernandes, P., Raffetto, M.: Spurious-free approximations of electromagnetic eigenproblems by means of Nédélec-type elements. Math. Model. Numer. Anal. 35, 331–358 (2001)
16. 16.
Chatelin, F.: Spectral Approximations of Linear Operators. Academic Press, San Diego (1983) Google Scholar
17. 17.
Costabel, M.: A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. 12, 365–368 (1990)
18. 18.
Costabel, M., Dauge, M.: Maxwell and Lamé eigenvalues on polyhedra. Math. Methods Appl. Sci. 22, 243–258 (1999)
19. 19.
Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151, 221–276 (2000)
20. 20.
Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93, 239–277 (2002)
21. 21.
Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér. 7, 33–75 (1973)
22. 22.
Dunford, N., Schwartz, J.T.: Linear Operators II. Wiley-Interscience, New York (1963)
23. 23.
Hesthaven, J.S., Warburton, T.: High order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos. Trans. R. Soc. Lond. Ser. A 362, 493–524 (2004)
24. 24.
Kato, T.: Perturbation Theory of Linear Operators. Springer, Berlin (1966) Google Scholar
25. 25.
Monk, P.: Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, London (2003)
26. 26.
Levillain, V.: Eigenvalue approximation by a mixed method for resonant inhomogeneous cavities with metallic boundaries. Math. Comput. 58, 11–20 (1992)
27. 27.
Warburton, T., Embree, M.: On the role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem. Comput. Mech. Appl. Eng. 195, 3205–3223 (2006)