A Semi-Lagrangian Method for a Fokker-Planck Equation Describing Fiber Dynamics

  • Axel Klar
  • Philip Reuterswärd
  • Mohammed Seaïd


A simplified Fokker-Planck model for the lay-down of fibers on a conveyor belt in the production process of nonwovens is investigated. It takes into account the motion of the fiber under the influence of turbulence. The emphasis in this paper is on the development of a numerical procedure to solve the model. We present a semi-Lagrangian scheme that accurately captures the fiber dynamics and conserves the mass. The scheme allows large time steps to be taken in numerical simulations and requires moderate computing times to obtain steady state solutions. Numerical results and examples are presented and compared for several selection of fiber parameters. The obtained results show that the semi-Lagrangian method is able to reproduce accurately the time development of functionals of the process that are important for the quality assessment of industrial fibers.


Fiber dynamics Fokker-Planck equations Semi-Lagrangian method Computational engineering 


  1. 1.
    Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Partial Differ. Equ. 26(1–2), 43–100 (2001) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bonilla, L., Götz, T., Klar, A., Marheineke, N., Wegener, R.: Hydrodynamic limit for the Fokker-Planck equation of fiber lay-down models. Preprint Google Scholar
  3. 3.
    Dawson, C.N.: Godunov-mixed methods for advective flow problems in one space dimension. SIAM J. Numer. Anal. 28, 1282–1309 (1991) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Desvilettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Commun. Pure Appl. Math. 54, 1–42 (2001) CrossRefGoogle Scholar
  5. 5.
    Douglas, J., Russell, T.F.: Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite elements or finite differences. SIAM J. Numer. Anal. 19, 871–885 (1982) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Douglas, J., Huang, C., Pereira, F.: The modified method of characteristics with adjusted advection. Numer. Math. 83, 353–369 (1999) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Götz, T., Klar, A., Marheineke, N., Wegener, R.: A stochastic model and associated Fokker-Planck equation for the fiber lay-down process in nonwoven production processes. SIAM Appl. Math. 67(6), 1704–1717 (2007) MATHCrossRefGoogle Scholar
  8. 8.
    Grothaus, M., Klar, A.: Ergodicity and rate of convergence for a non-sectorial fiber lay-down process. SIAM Math. Anal. (2007, to appear) Google Scholar
  9. 9.
    Hearle, J.W., Sultan, M.A., Govender, S.: The form taken by threads laid on a moving belt, Part I–III. J. Text. Inst. 67, 373–386 (1976) CrossRefGoogle Scholar
  10. 10.
    Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: General modeling framework. SIAM J. Appl. Math. 66(5), 1703–1726 (2006) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: Specific Taylor drag. SIAM J. Appl. Math. 68(1), 1–23 (2007) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Robert, A.: A stable numerical integration scheme for the primitive meteorological equations. Atmos. Ocean 19, 35–46 (1981) Google Scholar
  13. 13.
    Seaïd, M.: On the quasi-monotone modified method of characteristics for transport-diffusion problems with reactive sources. Comput. Methods Appl. Math. 2, 186–210 (2002) MATHMathSciNetGoogle Scholar
  14. 14.
    Seaïd, M.: Semi-Lagrangian integration schemes for viscous incompressible flows. Comput. Methods Appl. Math. 4, 1–18 (2002) Google Scholar
  15. 15.
    Shu, C., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Axel Klar
    • 1
    • 2
  • Philip Reuterswärd
    • 1
  • Mohammed Seaïd
    • 3
  1. 1.Fachbereich MathematikTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Fraunhofer-Institut für Techno- und WirtschaftsmathematikKaiserslauternGermany
  3. 3.School of EngineeringUniversity of DurhamDurhamUK

Personalised recommendations