Skip to main content
Log in

A Legendre Pseudospectral Penalty Scheme for Solving Time-Domain Maxwell’s Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we present a Legendre pseudospectral algorithm based on a tensor product formulation for solving the time-domain Maxwell equations. Our approach starts by conducting an analysis for finding well-posed boundary operators for the Maxwell equations. We then discuss equivalent characteristic boundary conditions for common physical boundary constraints. These theoretical results are then employed to construct a pseudospectral penalty scheme which is asymptotically stable at the semidiscrete level. Numerical computations based on the proposed scheme are also provided for different cases where exact solutions exist. By measuring the differences between the computed and exact solutions, we observe the expected convergence patterns of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abarbanel, S., Gottlieb, D.: On the construction and analysis of absorbing layer in CEM. Appl. Numer. Math. 27, 331–340 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abarbanel, S., Gottlieb, D., Hesthaven, J.: Well-posed perfectly matched layers for advective acoustics. J. Comput. Phys. 154, 266–283 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic wave. J. Comput. Phys. 114, 185–200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer, New York (1986)

    Google Scholar 

  5. Carpenter, M.H., Gottlieb, D.: Spectral methods on arbitrary grids. J. Comput. Phys. 129, 74–86 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carpenter, M.H., Kennedy, C.A.: Fourth order 2N-storage Runge-Kutta scheme. NASA-TM-109112, NASA Langley Research Center, VA (1994)

  7. Carpenter, M.H., Gottlieb, D., Abarbanel, S., Don, W.S.: The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A careful study of the boundary error. SIAM J. Sci. Comput. 16, 1241–1252 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (1984)

    MATH  Google Scholar 

  9. Don, W.S., Gottlieb, D.: The Chebyshev-Legendre method: Implementing Legendre methods on Chebyshev points. SIAM J. Numer. Anal. 31, 1519–1534 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fan, G.X., Liu, Q.H., Hesthaven, J.S.: Multidomain pseudospectral time-domain simulations of scattering by objects buried in lossy media. IEEE Trans. Geosci. Remote Sens. 40, 1366–1373 (1998)

    Article  Google Scholar 

  11. Funaro, D.: Polynomial Approximation of Differential Equations. Springer, New York (1992)

    MATH  Google Scholar 

  12. Funaro, D.: FORTRAN routines for spectral methods (1993). Available on http://cdm.unimo.it/home/matematica/funaro.daniele/rout.htm

  13. Funaro, D.: Spectral Elements for Transport-Dominated Equations. Springer, New York (1997)

    MATH  Google Scholar 

  14. Funaro, D., Gottlieb, D.: A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations. Math. Comput. 51, 599–613 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Funaro, D., Gottlieb, D.: Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment. Math. Comput. 57, 585–596 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gordon, W.J., Hall, C.A.: Transfinite element methods: Blending-function interpolation over arbitrary curved element domains. Numer. Math. 21, 109–129 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gordon, W.J., Hall, C.A.: Construction of curvilinear co-ordinate systems and applications to mesh generations. Int. J. Numer. Methods Eng. 7, 461–477 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hesthaven, J.S.: A stable penalty method for the compressible Navier-Stokes equations. II. One-dimensional domain decomposition schemes. SIAM J. Sci. Comput. 18, 658–685 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hesthaven, J.S.: On the analysis and construction of perfectly matched layers for the linearized Euler equations. J. Comput. Phys. 142, 129–147 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hesthaven, J.S.: A stable penalty method for the compressible Navier-Stokes equations. III. Multi dimensional domain decomposition schemes. SIAM J. Sci. Comput. 20, 63–92 (1999)

    MathSciNet  Google Scholar 

  22. Hesthaven, J.S.: Spectral penalty methods. Appl. Numer. Math. 33, 23–41 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hesthaven, J.S., Gottlieb, D.: A stable penalty method for the compressible Navier-Stokes Equations. I. Open boundary conditions. SIAM J. Sci. Comput. 17, 579–612 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hesthaven, J.S., Gottlieb, D.: Spectral collocation time-domain modeling of diffractive optical elements. J. Comput. Phys. 155, 287–306 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hesthaven, J.S., Gottlieb, D.: Stable spectral methods for conservation laws on triangles with unstructured grids. Comput. Methods Appl. Mech. Eng. 175, 361–381 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hesthaven, J.S., Kirby, R.M.: Filtering in Legendre spectral methods. Report no. 2003-28, Scientific Computing Group Reports (Division of Applied Mathematics, Brown University, RI) (2003). Available on http://www.dam.brown.edu/scicomp/reports/by-year/2003

  27. Hesthaven, J.S., Teng, C.H.: Stable spectral methods on tetrahedral elements. SIAM J. Sci. Comput. 21, 2353–2380 (2000)

    Article  MathSciNet  Google Scholar 

  28. Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181, 186–221 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hesthaven, J.S., Rasumssen, J.J., Bergè, L., Wyller, J.: Numerical studies of localized wavefields governed by the Raman-extented derivative nonlinear Schrödinger equation. J. Phys. A 30, 8207–8224 (1997)

    Article  MATH  Google Scholar 

  30. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  31. Ji, X., Cai, W., Zhang, P.: High-order DGTD methods for dispersive Maxwell’s equations and modeling of silver nanowire coupling. Int. J. Numer. Methods Eng. 69, 308–325 (2007)

    Article  MathSciNet  Google Scholar 

  32. Ji, X., Lu, T., Cai, W., Zhang, P.: Discontinuous Galerkin time domain (DGTD) methods for the study of 2-D waveguide coupled microring resonators. J. Lightwave Technol. 23, 3864–3874 (2007)

    Google Scholar 

  33. Kong, J.A.: Electromagnetic Wave Theory. EMW Publishing, Cambridge (1999)

    Google Scholar 

  34. Liu, Q.H.: Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm. IEEE Trans. Geosci. Remote Sens. 37, 917–926 (1999)

    Article  Google Scholar 

  35. Mohammadian, A.H., Shankar, V., Hall, W.F.: Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure. Comput. Phys. Commun. 57, 585–596 (1991)

    Google Scholar 

  36. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edn. Artech House, Norwood (2000)

    MATH  Google Scholar 

  37. Xiao, T., Liu, Q.H.: The three-dimensional unstructured-grid discontinuous Galerkin methods for Maxwell’s equations with well-posed perfectly matched layer. Microw. Opt. Technol. Lett. 46, 459–463 (2005)

    Article  Google Scholar 

  38. Yang, B., Hesthaven, J.S.: A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution. IEEE Trans. Antennas Propag. 47, 132–141 (1999)

    Article  Google Scholar 

  39. Yang, B., Hesthaven, J.S.: Multidomain pseudospectral computation of Maxwell’s equationsin 3-D general curvilinear coordinates. Appl. Numer. Math. 33, 281–289 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Yang, B., Gottlieb, D., Hesthaven, J.S.: Spectral simulations of electromagnetic wave scattering. J. Comput. Phys. 134, 216–230 (1997)

    Article  MATH  Google Scholar 

  41. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  Google Scholar 

  42. Zhao, G., Liu, Q.H.: The 3D multidomain pseudospectral time-domain algorithm for inhomogeneous conductive media. IEEE Trans. Antennas Propag. 52, 742–749 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hao Teng.

Additional information

This work is supported by National Science Council grant No. NSC 95-2120-M-001-003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, CH., Lin, BY., Chang, HC. et al. A Legendre Pseudospectral Penalty Scheme for Solving Time-Domain Maxwell’s Equations. J Sci Comput 36, 351–390 (2008). https://doi.org/10.1007/s10915-008-9194-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9194-8

Keywords

Navigation