Advertisement

Journal of Scientific Computing

, Volume 36, Issue 2, pp 193–217 | Cite as

Extension of WAF Type Methods to Non-Homogeneous Shallow Water Equations with Pollutant

  • E. D. Fernández-Nieto
  • G. Narbona-Reina
Article

Abstract

This paper deals with the extension of the WAF method to discretize Shallow Water Equations with pollutants. We consider two different versions of the WAF method, by approximating the intermediate waves using the flux of HLL or the direct approach of HLLC solver. It is seen that both versions can be written under the same form with different definitions for the approximation of the velocity waves. We also propose an extension of the method to non-homogeneous systems. In the case of homogeneous systems it is seen that we can rewrite the third component of the numerical flux in terms of an intermediate wave speed approximation. We conclude that—in order to have the same relation for non-homogeneous systems—the approximation of the intermediate wave speed must be modified. The proposed extension of the WAF method preserves all stationary solutions, up to second order accuracy, and water at rest in an exact way, even with arbitrary pollutant concentration. Finally, we perform several numerical tests, by comparing it with HLLC solver, reference solutions and analytical solutions.

Keywords

Finite volume method Well-balanced Upwinding Shallow water Source terms WAF HLLC Pollutant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. (electronic) 25(6), 2050–2065 (2004) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bermúdez, A., Vázquez Cendón, M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23(8), 1049–1071 (1994) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Billet, S.J., Toro, E.F.: On WAF-type schemes for multidimensional hyperbolic conservation laws. J. Comput. Phys. 130, 1–24 (1997) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Berthon, C., Marche, F.: A positive preserving high order VFROE scheme for shallow water equations. A class of relaxation schemes. SIAM J. Sci. Comput. (2007, submitted) Google Scholar
  5. 5.
    Castro, M.J., Ferreiro, A.M., García, J.A., González, J.M., Macías, J., Parés, C., Vázquez, M.E.: On the numerical treatment of wet/dry fronts in shallow flows: applications to one-layer and two-layer systems. Math. Comput. Model. 42(3–4), 419–439 (2005) MATHCrossRefGoogle Scholar
  6. 6.
    Castro, M.J., González-Vida, J.M., Parés, C.: Numerical treatment of wet/dry fronts in shallow flows with a modified Roe scheme. Math. Models Methods Appl. Sci. 16(6), 897–931 (2006) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chacón Rebollo, T., Fernández-Nieto, E.D., Gómez Mármol, M.: A flux-splitting solver for shallow watter equations with source terms. Int. J. Numer. Methods Fluids 42(1), 23–55 (2003) MATHCrossRefGoogle Scholar
  8. 8.
    Chacón Rebollo, T., Domínguez Delgado, A., Fernández-Nieto, E.D.: Asymptotical balanced schemes for non-homogeneous hyperbolic systems. Applications to shallow water equations. C.R. Acad. Sci. Paris 338, 85–90 (2004) MATHGoogle Scholar
  9. 9.
    Fernández-Nieto, E.D., Bresch, D., Monnier, J.: A consistent intermediate wave speed for a well-balanced HLLC solver. C.R. Acad. Sci. Paris (2007, submitted) Google Scholar
  10. 10.
    Fernández Nieto, E.D.: Aproximación numérica de leyes de conservación hiperbólicas no homogéneas. Aplicación a las ecuaciones de aguas someras. Ph.D. Thesis Universidad de Sevilla (2003) Google Scholar
  11. 11.
    Gallardo, J.M., Parés, C., Castro, M.J.: On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227, 574–601 (2007) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gallouët, T., Hérard, J.M., Seguin, N.: Some approximate Godunov schemes to compute shallow water equations with topography. Comput. Fluids 32(4), 479–513 (2003) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gosse, L.: A well-balanced scheme using non-conservative products designed for hyperbolic system of conservation laws with source terms. Math. Models Methods Appl. Sci. 11, 339–365 (2001) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Greenberg, J.M., Leroux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33(1), 1–16 (1996) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5(1), 133–160 (2007) MATHMathSciNetGoogle Scholar
  16. 16.
    LeFloch, P.G.: Shock waves for nonlinear hyperbolic systems in nonconservative form. Institute for Math. and Its Appl., Minneapolis, Preprint 593 (1989) Google Scholar
  17. 17.
    LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Marche, F., Bonneton, P., Fabrie, P., Seguin, N.: Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes. Int. J. Numer. Methods Fluids 53(5), 867–894 (2007) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Parés, C., Castro, M.J.: On the well-balanced property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM: M2AN 38(5), 821–852 (2004) MATHCrossRefGoogle Scholar
  20. 20.
    Perthame, B., Simeoni, C.: A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38(4), 201–231 (2001) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Roe, P.L.: Upwind differencing schemes for hyperbolic conservation laws with source terms. In: Carraso, C., Raviart, P.-A., Serre, D. (eds.) Nonlinear Hyperbolic Problems. Lecture Notes in Mathematics, vol. 1270, pp. 41–51. Springer, Berlin (1986) CrossRefGoogle Scholar
  22. 22.
    Schwartzkopff, T., Munz, C.D., Toro, E.F.: ADER: high-order approach for linear hyperbolic systems in 2D. J. Sci. Comput. 17(1–4), 231–240 (2002) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Titarev, V.A., Toro, E.F.: WENO schemes based on upwind and centered TVD fluxes. Comput. Fluids 34, 705–720 (2005) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Titarev, V.A., Toro, E.F.: Analysis of ADER and ADER-WAF schemes. IMA J. Numer. Anal. 27(3), 616–630 (2007) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional non-linear hyperbolic systems. J. Comput. Phys. 204, 715–736 (2005) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Toro, E.F.: A weighted average flux method for hyperbolic conservation laws. Proc. R. Soc. Lond. A 423, 401–418 (1989) MATHCrossRefGoogle Scholar
  27. 27.
    Toro, E.F.: Riemann problems and the WAF method for solving two-dimensional shallow water equations. Philos. Trans. R. Soc. Lond. A 338, 43–68 (1992) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Toro, E.F.: The weighted average flux method applied to the time dependent Euler equations. Philos. Trans. R. Soc. Lond. A 341, 499–530 (1992) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Toro, E.F.: Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley, New York (2001) MATHGoogle Scholar
  30. 30.
    Toro, E.F., Millington, R.C., Nejad, L.A.M.: Primitive upwind numerical methods for hyperbolic partial differential equations. In: Bruneau, C.H. (ed.) Sixteenth International Conference on Numerical Methods for Fluids Dynamics. Lecture Notes in Physics, pp. 421–426. Springer, Berlin (1998) CrossRefGoogle Scholar
  31. 31.
    Toro, E.F., Titarev, V.A.: Solution of the generalised Riemann problem for advection-reaction equations. Proc. R. Soc. Lond. A 458, 271–281 (2002) MATHMathSciNetGoogle Scholar
  32. 32.
    Toro, E.F., Titarev, V.A.: TVD fluxes for the high-order ADER schemes. J. Sci. Comput. 24(3), 285–309 (2005) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Toro, E.F., Titarev, V.A.: ADER schemes for scalar hyperbolic conservation laws with source terms in three space dimensions. J. Comput. Phys. 202, 196–215 (2005) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Vignoli, G., Titarev, V.A., Toro, E.F.: ADER schemes for the shallow water equations in channel with irregular bottom elevation. J. Comput. Phys. 227, 2463–2480 (2008) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Xing, Y., Shu, C.-W.: High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source term. J. Comput. Phys. 214, 567–598 (2006) MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Zhou, J.G., Causon, D.M., Mingham, C.G., Ingram, D.M.: The surface gradient method for the treatment of source terms in the sallow-water equations. J. Comput. Phys. 168, 1–25 (2001) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada I, E.T.S. ArquitecturaUniversidad de SevillaSevillaSpain

Personalised recommendations