Journal of Scientific Computing

, Volume 35, Issue 1, pp 43–61 | Cite as

An Improved Sharp Interface Method for Viscoelastic and Viscous Two-Phase Flows

  • P. A. Stewart
  • N. Lay
  • M. Sussman
  • M. Ohta


We introduce a robust method for computing viscous and viscoelastic two-phase bubble and drop motions. Our method utilizes a coupled level-set and volume-of-fluid technique for updating and representing the air-water interface. Our method introduces a novel approach for treating the viscous coupling terms at the air-water interface; these improvements result in improved stability for computing two-phase bubble formation solutions. We also present an improved, “positive-preserving” discretization technique for updating the configuration tensor for viscoelastic flows, in the context of computing two-phase bubble and drop motion.


Level-set method Volume-of-fluid method Two-phase flow Bubbles Drops 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sussman, M., Smith, K.M., Hussaini, M.Y., Ohta, M., Zhi-Wei, R.: A sharp interface method for incompressible two-phase flows. J. Comput. Phys. 221(2), 469–505 (2007) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Jimenez, E., Sussman, M., Ohta, M.: A computational study of bubble motion in Newtonian and viscoelastic fluids. Fluid Dyn. Mater. Process. 1(2), 97–108 (2005) MathSciNetGoogle Scholar
  3. 3.
    Sussman, M., Ohta, M.: Improvements for calculating two-phase bubble and drop motion using an adaptive sharp interface method. Fluid Dyn. Mater. Process. 3(1), 21–36 (2007) MathSciNetGoogle Scholar
  4. 4.
    Kang, M., Fedkiw, R., Liu, X.-D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15 (2000) Google Scholar
  5. 5.
    Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Liu, X.-D., Fedkiw, R.P., Kang, M.: A boundary condition capturing method for Poisson’s equation on irregular domains. J. Comput. Phys. 160(1), 151–178 (2000) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Li, J., Renardy, Y.Y., Renardy, M.: Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method. Phys. Fluids 12(2), 269–282 (2000) CrossRefGoogle Scholar
  8. 8.
    Hong, J.-M., Shinar, T., Kang, M., Fedkiw, R.: On boundary condition capturing for multiphase interfaces. J. Sci. Comput. 31, 99–125 (2007) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., Fedkiw, R.: Directable photorealistic liquids. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2004 Google Scholar
  10. 10.
    Yu, J.-D., Sakai, S., Sethian, J.A.: Two-phase viscoelastic jetting. J. Comput. Phys. 220(2), 568–585 (2007) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Pillapakkam, S.B., Singh, P.: A level-set method for computing solutions to viscoelastic two-phase flow. J. Comput. Phys. 174(2), 552–578 (2001) MATHCrossRefGoogle Scholar
  12. 12.
    Goktekin, T.G., Bargteil, A.W., O’Brien, J.F.: Method for animating viscoelastic fluids. ACM Trans. Graph. 23(3), 463–468 (2004) CrossRefGoogle Scholar
  13. 13.
    Losasso, F., Shinar, T., Selle, A., Fedkiw, R.: Multiple interacting fluids. In: SIGGRAPH 2006. ACM TOG 25, pp. 812–819 (2006) Google Scholar
  14. 14.
    Irving, G.: Methods for the physically based simulation of solids and fluids. Department of Computer Science, Stanford, Palo Alto (2007) Google Scholar
  15. 15.
    Chilcott, M.D., Rallison, J.M.: Creeping flow of dilute polymer solutions past cylinders and spheres. J. Non-Newton. Fluid Mech. 29, 381–432 (1988) CrossRefGoogle Scholar
  16. 16.
    Singh, P., Leal, L.G.: Finite-element simulation of the start-up problem for a viscoelastic fluid in an eccentric rotating cylinder geometry using a third-order upwind scheme. Theor. Comput. Fluid Dyn. V5(2), 107–137 (1993) CrossRefGoogle Scholar
  17. 17.
    Khismatullin, D., Renardy, Y., Renardy, M.: Development and implementation of VOF-PROST for 3D viscoelastic liquid-liquid simulations. J. Non-Newton. Fluid Mech. 140(1-3), 120–131 (2006) MATHCrossRefGoogle Scholar
  18. 18.
    Trebotich, D., Colella, P., Miller, G.H.: A stable and convergent scheme for viscoelastic flow in contraction channels. J. Comput. Phys. 205(1), 315–342 (2005) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Chang, Y., Hou, T., Merriman, B., Osher, S.: Eulerian capturing methods based on a level set formulation for incompressible fluid interfaces. J. Comput. Phys. 124, 449–464 (1996) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sussman, M., Puckett, E.G.: A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301–337 (2000) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Tatebe, O.: The multigrid preconditioned conjugate gradient method. In: 6th Copper Mountain Conference on Multigrid Methods, Copper Mountain, Colorado, 1993 Google Scholar
  22. 22.
    Briggs, W.L., Henson, V.E., McCormick, S.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000) Google Scholar
  23. 23.
    van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 100, 25–37 (1979) Google Scholar
  24. 24.
    Sussman, M.: A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys. 187(1), 110–136 (2003) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Sussman, M.: A parallelized, adaptive algorithm for multiphase flows in general geometries. Comput. Struct. 83, 435–444 (2005) CrossRefGoogle Scholar
  26. 26.
    Hadamard, J.: Movement permanent lent d’une sphere liquide et visqueuse dans un liquide visqueux. C. R. Acad. Sci. Paris 152, 1735–1738 (1911) Google Scholar
  27. 27.
    Rybczynski, W.: Uber die fortschreitende Bewegung einer flussigen Kugel in einem zahen Medium. Bull. Int. Acad. Sci. Cracovia Cl. Sci. Math. Natur, 40–46 (1911) Google Scholar
  28. 28.
    Bhaga, D., Weber, M.E.: Bubbles in viscous liquids: shapes, wakes and velocities. J. Fluid Mech. Digit. Arch. 105(1), 61–85 (2006) Google Scholar
  29. 29.
    Bright, A.: Minimum drop volume in liquid jet breakup. Chem. Eng. Res. Des. 63, 59–66 (1985) Google Scholar
  30. 30.
    Richards, J.R., Lenhoff, A.M., Beris, A.N.: Dynamic breakup of liquid-liquid jets. Phys. Fluids 6, 2640–2655 (1994) MATHCrossRefGoogle Scholar
  31. 31.
    Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981) MATHCrossRefGoogle Scholar
  32. 32.
    Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Johnson, J.R.E., Dettre, R.H.: The wettability of low-energy liquid surfaces. J. Colloid Interface Sci. 21(6), 610–622 (1966) CrossRefGoogle Scholar
  34. 34.
    Noh, D.S., Kang, I.S., Leal, L.G.: Numerical solutions for the deformation of a bubble rising in dilute polymeric fluids. Phys. Fluids A 5, 1315 (1993) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsFlorida State UniversityTallahasseeUSA
  2. 2.Department of Applied ChemistryMuroran Institute of TechnologyHokkaidoJapan

Personalised recommendations