Journal of Scientific Computing

, Volume 34, Issue 1, pp 26–47 | Cite as

Dispersion Analysis of Discontinuous Galerkin Schemes Applied to Poincaré, Kelvin and Rossby Waves

  • P.-E. Bernard
  • E. Deleersnijder
  • V. Legat
  • J.-F. Remacle


A technique for analyzing dispersion properties of numerical schemes is proposed. The method is able to deal with both non dispersive or dispersive waves, i.e. waves for which the phase speed varies with wavenumber. It can be applied to unstructured grids and to finite domains with or without periodic boundary conditions.

We consider the discrete version L of a linear differential operator ℒ. An eigenvalue analysis of L gives eigenfunctions and eigenvalues (l i ,λ i ). The spatially resolved modes are found out using a standard a posteriori error estimation procedure applied to eigenmodes. Resolved eigenfunctions l i ’s are used to determine numerical wavenumbers k i ’s. Eigenvalues’ imaginary parts are the wave frequencies ω i and a discrete dispersion relation ω i =f(k i ) is constructed and compared with the exact dispersion relation of the continuous operator ℒ. Real parts of eigenvalues λ i ’s allow to compute dissipation errors of the scheme for each given class of wave.

The method is applied to the discontinuous Galerkin discretization of shallow water equations in a rotating framework with a variable Coriolis force. Such a model exhibits three families of dispersive waves, including the slow Rossby waves that are usually difficult to analyze. In this paper, we present dissipation and dispersion errors for Rossby, Poincaré and Kelvin waves. We exhibit the strong superconvergence of numerical wave numbers issued of discontinuous Galerkin discretizations for all families of waves. In particular, the theoretical superconvergent rates, demonstrated for a one dimensional linear transport equation, for dissipation and dispersion errors are obtained in this two dimensional model with a variable Coriolis parameter for the Kelvin and Poincaré waves.


Dispersion analysis Discontinuous Galerkin method Geophysical flows Hyperbolic systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 1097–1112 (2002) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ainsworth, M.: Dispersive and dissipative behavior of high order Discontinuous Galerkin finite element methods. J. Comput. Phys. 198(1), 106–130 (2004) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations. J. Comput. Phys. 130, 267–279 (1997) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138, 251–285 (1997) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Beckers, J.-M., Deleersnijder, E.: Stability of a FBTCS scheme applied to the propagation of shallow-water inertia-gravity waves on various space grids. J. Comput. Phys. 108, 95–104 (1993) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bernard, P.-E., Chevaugeon, N., Legat, V., Deleersnijder, E., Remacle, J.-F.: High-order h-adaptive discontinuous Galerkin methods for ocean modeling. Ocean Dyn. 57, 109–121 (2007) CrossRefGoogle Scholar
  7. 7.
    Chevaugeon, N., Remacle, J.-F., Galler, X., Ploumans, P., Caro, S.: Efficient discontinuous Galerkin methods for solving acoustic problems. In: 11th AIAA/CEAS Aeroacoustics Conference (2005) Google Scholar
  8. 8.
    Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2000) MATHGoogle Scholar
  9. 9.
    Gavrilov, M.B., Tosic, I.A.: Propagation of the Rossby waves on two dimensional rectangular grids. Meteorol. Atmospheric Phys. 68, 119–125 (1998) CrossRefGoogle Scholar
  10. 10.
    Gottlieb, D., Hesthaven, J.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131 (2001) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hanert, E., Le Roux, D.Y., Legat, V., Deleersnijder, E.: Advection schemes for unstructured grid ocean modelling. Ocean Model. 7, 39–58 (2004) CrossRefGoogle Scholar
  12. 12.
    Hu, F., Atkins, H.: Eigensolution analysis of the discontinuous Galerkin method with nonuniform grids I. One space dimension. J. Comput. Phys. 182(2), 516–545 (2002) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. Part 2. The hp version of the finite element method. SIAM J. Numer. Anal. 34, 315–358 (1997) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Iskandarani, M., Haidvogel, D.B., Boyd, J.P.: A staggered spectral element model with application to the oceanic shallow water equations. Int. J. Numer. Methods Fluids 20, 393–414 (1995) MATHCrossRefGoogle Scholar
  15. 15.
    Longuet-Higgins, M.S.: Planetary waves on a rotating sphere II. Proc. R. Soc. Lond. 284, 40–68 (1965) MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Majda, A.: Introduction to PDE’s and Waves for the Atmosphere and Ocean. American Mathematical Society (2003) Google Scholar
  17. 17.
    Marchandise, E., Chevaugeon, N., Remacle, J.-F.: Spatial and spectral superconvergence of discontinuous Galerkin method for hyperbolic problems. J. Comput. Appl. Math. (2006, in press) Google Scholar
  18. 18.
    Mesinger, F., Arakawa, A.: Numerical methods used in atmospheric models. Glob. Atmospheric Res. Programme (GARP) Publications Series No.17(1) (1976) Google Scholar
  19. 19.
    Pietrzak, J., Deleersnijder, E., Schroeter, J. (eds.): Ocean Model. (special issue) 10, 1–252 (2005). The Second International Workshop on Unstructured Mesh Numerical Modelling of Coastal, Shelf and Ocean Flows (Delft, the Netherlands, September 23–25, 2003) CrossRefGoogle Scholar
  20. 20.
    Remacle, J.-F., Li, X., Shephard, M.S., Flaherty, J.E.: Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods. Int. J. Numer. Methods Eng. 62(7), 899–923 (2005) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Thompson, L., Pinsky, P.: Complex wavenumber Fourier analysis of the p-version finite element method. Comput. Mech. 13, 255–275 (1994) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Warburton, T., Karniadakis, G.E.: A discontinuous Galerkin method for the viscous MHD equations. J. Comput. Phys. 152, 608–641 (1999) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wentzel, G.: A generalization of quantum conditions for the purposes of wave mechanics. Z. Phys. 38, 518 (1926) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • P.-E. Bernard
    • 1
  • E. Deleersnijder
    • 1
    • 2
  • V. Legat
    • 1
  • J.-F. Remacle
    • 1
    • 3
  1. 1.Center for Systems Engineering and Applied Mechanics (CESAME)Université Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Institut d’Astronomie et de Géophysique Georges LemaîtreUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Department of Civil EngineeringUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations