Journal of Scientific Computing

, Volume 32, Issue 2, pp 315–341 | Cite as

Total Variation Wavelet Thresholding


We propose using Partial Differential Equation (PDE) techniques in wavelet based image processing to remove noise and reduce edge artifacts generated by wavelet thresholding. We employ a variational framework, in particular the minimization of total variation (TV), to select and modify the retained wavelet coefficients so that the reconstructed images have fewer oscillations near edges while noise is smoothed. Numerical experiments show that this approach improves the reconstructed image quality in wavelet compression and in denoising.


wavelet image processing total variation minimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez L., Guichard F., Lions P.L., Morel J.M. (1993). Axioms and fundamental equations of image processing. Arch. Rational Mech. Anal. 16, 200–257MathSciNetGoogle Scholar
  2. 2.
    Alvarez L., Morel J.M. (1994). Formalization and computational aspects of image analysis. Acta Numerica 3, 1–59CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C. (1999). Image inpainting. Tech. Report, ECE-University of Minnesota.Google Scholar
  4. 4.
    Blomgren, P., and Chan, T. F. (1996). Color TV: Total variation methods for restoration of vector valued images. CAM Report, No. 96-5, Dept. of Math., UCLA.Google Scholar
  5. 5.
    Candès, E. J., and Guo, F. (2001). Edge-preserving image reconstruction from noisy radon data, in preparation (Invited Special Issue of the Journal of Signal Processing on Image and Video Coding Beyond Standards.).Google Scholar
  6. 6.
    Chui C.K. (1997). Wavelet: A Mathematical Tool for Signal Analysis, SIAM Monogr. Math. Model. Comput. 1, SIAM, PhiladelphiaGoogle Scholar
  7. 7.
    Candès, E., and Donoho, D. (1999). Curvelets: A surprisingly effective nonadaptive of objects with edges. Tech. Report, Dept. of Stat., Stanford Univ..Google Scholar
  8. 8.
    Chambolle, A., DeVore, R., Lee, N., and Lucier, B. (1998). Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Tran. Image Proc., Vol. 7, No. 3, Mar. 1998, pp. 319–333.Google Scholar
  9. 9.
    Chambolle A., Lions P.L. (1997). Image recovery via total variational minimization and related problems. Numer. Math. 76, 167–188MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chan, T. F., Golub, G. H., and Mulet, P. (1996). A nonlinear primal-dual method for total variation-based image restoration. In ICAOS’96, 12th International Conference on Analysis and Optimization of Systems: Images, Wavelets, and PDEs, Paris, June 26–28, 1996, number 219 in Lecture Notes in Control and Information Sciences, pp. 241–252.Google Scholar
  11. 11.
    Chan T.F., Mulet P. (1999). On the convergence of the lagged diffusivity fixed point method in total variation image restoration. SIAM J. Numer. Anal. 36, 354–367CrossRefMathSciNetGoogle Scholar
  12. 12.
    Chan T.F., Osher S., Shen J. (2001). The digital TV filter and nonlinear denoising. IEEE Trans. Image Process. 10(2): 231–241MATHCrossRefGoogle Scholar
  13. 13.
    Chan T.F., Shen J. (2002). Mathematical models for local non-texture inpainting. SIAM J. Appl. Math. 62(3): 1019–1043MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Chan T.F., Vese L. (2001). Active contour without edges. IEEE Trans. Image Process. 10(2): 266–277MATHCrossRefGoogle Scholar
  15. 15.
    Chan T.F., Wong CK. (1998). Total variation blind deconvolution. IEEE Trans. Image Process. 7, 370–375CrossRefGoogle Scholar
  16. 16.
    Chan, T. F., and Zhou, H. M. (1999). Adaptive ENO-wavelet transforms for discontinuous functions. CAM Report, No. 99-21, Dept. of Math., UCLA, June 1999. To appear in SIAM Numerical Analysis.Google Scholar
  17. 17.
    Chan, T. F., and Zhou, H. M. (1998). Feature preserving lossy image compression using nonlinear PDEs. In Luk, F. T. (ed.), SPIE Proceedings on Advanced Signal Processing Algorithms, Architectures, and Implementations VIII, Vol. 3461. San Diego, California, July 1998, pp. 316–327.Google Scholar
  18. 18.
    Chan, T. F., and Zhou, H. M. (2000). Optimal constructions of wavelet coefficients using total variation regularization in image compression. CAM Report, No. 00-27, Dept. of Math., UCLA, July 2000.Google Scholar
  19. 19.
    Chan, T. F., and Zhou, H. M. (2000). Total variation improved wavelet thresholding in image compression. In Proceedings to the 2000 International Conference on Image Processing, Vancouver, BC, Canada, Sept. 10–13, 2000, pp. 391–394.Google Scholar
  20. 20.
    Claypoole, P., Davis, G., Sweldens, W., and Baraniuk, R. (1999). Nonlinear wavelet transforms for image coding. Correspond. Author: Baraniuk, Dept. of Elec. and Comp. Sci., also Submit to IEEE Trans. on Image Proc., Preprint, 1999.Google Scholar
  21. 21.
    Dobson D., Vogel C.R. (1997). Convergence of an iterative method for total variation denoising. SIAM J. Num. Anal. 34, 1779–1971MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Donoho D. (1995). De-noising by soft thresholding. IEEE Trans. Inf. Th. 41, 613–627MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Donoho, D. (1997). Wedgelets: Nearly-Minimax Estimation of Edges. Tech. Report, Dept. of Stat., Stanford Univ.Google Scholar
  24. 24.
    Donoho, D. (1998). Orthonormal Ridgelets and Linear Singularities, Tech. Report, Dept. of Stat., Stanford Univ.Google Scholar
  25. 25.
    Donoho, D. (1999). Sparse Components of Images and Optimal Atomic Decompositions. Tech. Report, Dept. of Stat., Stanford Univ.Google Scholar
  26. 26.
    Durand, S., and Froment, J. (2001). Artifact free signal denoising with wavelets. In Proceedings of ICASSP’01, Vol. 6, 2001, pp. 3685–3688.Google Scholar
  27. 27.
    Special Issue on partial differential equations and geometry-driven diffusion in image processing and analysis. IEEE Trans. Image Proc., Vol. 7, No. 3, Mar. 1998.Google Scholar
  28. 28.
    Hansen, P. C. (1999). The L-curve and its use in the numerical treatment of inverse problems. Tech. Report, IMM-REP 99-15, Dept. of Math. Model., Tech. Univ. of Denmark.Google Scholar
  29. 29.
    Harten A. (1993). Discrete multi-resolution analysis and generalized wavelet. Appl. Numer. Math. 12, 153–192MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Harten, A. (1994). Multiresolution representation of data, II. general framework. CAM Report 94-10, UCLA, Los Angeles, CA.Google Scholar
  31. 31.
    Malgouyres, F. (2000). Increase in the resolution of digital images: variational theory and applications, Ph.D. thesis, Ecole Normale Supérieure de Cachan, 2000, Cachan, France.Google Scholar
  32. 32.
    Malgouyres, F. (2002). Mathematical analysis of a model which combines total variation and wavelet for image restoration. Journal of information processes, 2:1, 2002, pp. 1–10.Google Scholar
  33. 33.
    Malgouyres F., Guichard F. (2001). Edge Direction preserving image zooming: a mathematical and numerical analysis. SIAM, J. Num. Anal. 39(1): 1–37MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Mallat S. (1998). A Wavelet Tour of Signal Processing. Academic Press, San Diego, CAMATHGoogle Scholar
  35. 35.
    Meyer, Y. (2001). Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, volume 22 of University Lecture Series. AMS, Providence.Google Scholar
  36. 36.
    Morel, J. M., and Solimini, S. (1994). Variational Methods in Image Segmentation, Birkhauser.Google Scholar
  37. 37.
    Mumford D., Shah J. (1989). Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Olshausen, B. A., and Field, D. J. (1979). Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature 281, pp. 607–609.Google Scholar
  39. 39.
    Marquina, A., and Osher, S. (1999). Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal. CAM Report, No.~99-5, Dept. of Math., UCLA.Google Scholar
  40. 40.
    Le Pennec, E., and Mallat, S. (2000). Image compression with geometrical wavelets. In IEEE Conference on Image Processing(ICIP), Vancouver, September, 2000.Google Scholar
  41. 41.
    Perona P., Malik J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE T Pattern Anal. 12(7): 629–639CrossRefGoogle Scholar
  42. 42.
    Rudin L., Osher S., Fatemi E. (1992). Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268MATHCrossRefGoogle Scholar
  43. 43.
    Sapiro G., Tannenbaum A. (1993). Affine invariant scale-space. Internet. J. Comput. Vision 11, 25–44CrossRefGoogle Scholar
  44. 44.
    Steidl G., Weickert J., Brox T., Mrzek P., Welk M. (2004). On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM J. Num. Ana. 42(2): 686–713MATHCrossRefGoogle Scholar
  45. 45.
    Strang G., Nguyen T. (1996). Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley, MAGoogle Scholar
  46. 46.
    Strong, D. M., Blomgren, P., and Chan, T. F. (1997). Spatially adaptive local feature-driven total variation minimizing image restoration. Proceedings of SPIE, Vol. 3167, 1997, pp. 222–233 .Google Scholar
  47. 47.
    Vogel C., Oman M. (1996). Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Vogel C., Oman M. (1998). Fast, robust total variation–based reconstruction of noisy, blurred images. IEEE Trans. Image Process. 7, 813–824MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Weickert J. (1998). Anisotropic Diffusion in Image Processing. ECMI Series, Teubner, StuttgartMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsThe University of CaliforniaLos AngelesUSA
  2. 2.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations