Advertisement

Journal of Scientific Computing

, Volume 30, Issue 3, pp 465–491 | Cite as

hp-Version a priori Error Analysis of Interior Penalty Discontinuous Galerkin Finite Element Approximations to the Biharmonic Equation

  • Igor Mozolevski
  • Endre Süli
  • Paulo R. Bösing
Article

Abstract

We consider the symmetric formulation of the interior penalty discontinuous Galerkin finite element method for the numerical solution of the biharmonic equation with Dirichlet boundary conditions in a bounded polyhedral domain in \(\mathbb{R}^d, d \geqslant 2\). For a shape-regular family of meshes consisting of parallelepipeds, we derive hp-version a priori bounds on the global error measured in the L2 norm and in broken Sobolev norms. Using these, we obtain hp-version bounds on the error in linear functionals of the solution. The bounds are optimal with respect to the mesh size h and suboptimal with respect to the degree of the piecewise polynomial approximation p. The theoretical results are confirmed by numerical experiments, and some practical applications in Poisson–Kirchhoff thin plate theory are presented.

Keywords

High-order elliptic equations finite element methods discontinuous Galerkin methods a priori error analysis linear functionals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold D.N., Brezzi F., Cockburn B., Marini D. (2001). Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5): 1749–1779CrossRefMathSciNetGoogle Scholar
  2. 2.
    Babuška I., Miller A. (1984). The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements. Int. J. Numer. Meth. Eng. 20(6): 1085–1109CrossRefGoogle Scholar
  3. 3.
    Babuška I., Miller A. (1984). The post-processing approach in the finite element method—part 2: The calculation of stress intensity factors. Int. J. Numer. Meth. Eng. 20(6): 1111–1129CrossRefGoogle Scholar
  4. 4.
    Babuška I., Miller A. (1984). The post-processing approach in the finite element method—part 3: A posteriori error estimates and adaptive mesh selection. Int. J. Num. Meth. Eng. 20(6): 2311–2325CrossRefGoogle Scholar
  5. 5.
    Babuška I., Suri M. (1987). The hp-version of the finite element method with quasiuniform meshes. Math. Model. Numer. Anal. 21: 199–238Google Scholar
  6. 6.
    Baker G. (1977). Finite element methods for elliptic equations using nonconforming . Math. Comp. 31: 44–59Google Scholar
  7. 7.
    Blum H., Rannacher R. (1980). On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Meth. Appl. Sci. 2: 556–581MATHMathSciNetGoogle Scholar
  8. 8.
    Brenner S.C., Scott L.R.(2002). The Mathematical Theory of Finite Element Methods, 2nd edn. Spinger, BerlinMATHGoogle Scholar
  9. 9.
    Brezzi F., Fortin M. (1991). Mixed and Hybrid Finite Element Methods. Springer, BerlinMATHGoogle Scholar
  10. 10.
    Ciarlet P.G. (1991). Basic error estimates for elliptic problems. In: Ciarlet P., Lions J. (eds), Handbook of Numerical Analysis, Vol.2. North Holland, AmsterdamGoogle Scholar
  11. 11.
    Cockburn B., Karniadakis G.E., Shu C.-W. (eds) (2000). Discontinuous Galerkin Methods, LNCSE, Vol.11, Springer, BerlinGoogle Scholar
  12. 12.
    Douglas J.J., Dupont T. (1976). Interior penalty procedures for elliptic and parabolic Galerkin methods. Lectures Notes in Physics Vol.58. Springer-Verlag, BerlinGoogle Scholar
  13. 13.
    Engel G., Garikipati K., Hughes T., Larson M., Mazzei L., Taylor R. (2002). Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Meth. Appl. Mech. Eng. 191: 3669–3750MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Georgoulis E.H., Süli E. (2005). Optimal error estimates for the hp-version interior penalty discontinuous Galerkin finite element method. IMA J. Numer. Anal. 25: 205–220MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Girault V., Raviart P. (1986). Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Spring-Verlag, BerlinMATHGoogle Scholar
  16. 16.
    Grisvard P. (1992). Singularities in Boundary Value Problems. Research Notes in Applied Mathematics. Masson, ParisMATHGoogle Scholar
  17. 17.
    Harriman K., Gavaghan D.J., and Süli E. (2004) The Importance of Adjoint Consistency in the Approximations of Linear Functionals Using the Discontinuous Galerkin Finite Element Method. Tech. Rep. 04/18, Oxford University Computing Laboratory.Google Scholar
  18. 18.
    Harriman K., Houston P., Senior B., Süli E. (2002). hp-version Galerkin methods with interior penalty for partial differential equations with characteristic form. In: Shu C.-W., Tang T., Cheng S.-Y. (eds), Recent Advances in Scientific Computing and Partial Differential Equations, Contemporary Mathematics Vol. 330, AMS, 2003 pp. 89-119Google Scholar
  19. 19.
    Kanschat G., Rannacher R. (2002). Local error analysis of the interior penalty discontinuous Galerkin method for second order elliptic problems. J. Numer. Math. 10(4): 249–274MATHMathSciNetGoogle Scholar
  20. 20.
    Kozlov V.A., Maz’ya, V.G. (1996). Singularities in solutions to mathematical physics problems in non-smooth domains. In: Cea J. et al. (ed), Partial Differential Equations and Functional Analysis. Proceedings of the conference held in November 1994 in memory of Pierre Grisvard. Progr. Nonlinear Differential Equations Appl., Vol. 22, Birkhäuser Boston, Boston MA. pp. 174–206Google Scholar
  21. 21.
    Larson M., Niklasson A. (2004). Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one dimensional case. Numer. Math. 99(1): 113–130MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Mozolevski I., Süli E. (2003). A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Meth. Appl. Math. 3(4): 596–607MATHGoogle Scholar
  23. 23.
    Oden J.T., Babuška I., Baumann C. (1998). The local discontinuous Galerkin finite element method for diffusion problems. J. Comput. Phys. 146: 491–519MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Rivière B., Wheeler M.F., Girault V. (2001). A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. J.Numer. Anal. 39(3): 902–931MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Schwab C. (1998). p- and hp- Finite Element Methods. Theory and Applications to Solid and Fluid Mechanics. Oxford University Press, OxfordGoogle Scholar
  26. 26.
    Süli E., Mozolevski I. (2004). hp-version Interior Penalty DGFEMs for the Biharmonic Equation. Techinical Report 04/05, Oxford University Computing Laboratory. http://web.comlab.ox.ac.uk/oucl/publications/natr/na-04-05.htmlGoogle Scholar
  27. 27.
    Timoshenko S.P., Woinowsky-Krieger S. (1984). Theory of plates and shells, 25edn. McGraw-Hill International Book Company, New yorkGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Igor Mozolevski
    • 1
  • Endre Süli
    • 2
  • Paulo R. Bösing
    • 3
  1. 1.Mathematics DepartmentFederal University of Santa CatarinaTrindadeBrazil
  2. 2.Computing LaboratoryUniversity of OxfordOxfordUK
  3. 3.Applied Mathematics Department, IMEUniversity of São PauloSão PauloBrazil

Personalised recommendations