Journal of Scientific Computing

, Volume 30, Issue 2, pp 223–235 | Cite as

A Discrete Scheme for Parametric Anisotropic Surface Diffusion

  • Frank Haußer
  • Axel Voigt


In this note we present, how anisotropic surface energies may be incorporated into the finite element method for parametric surface diffusion given by Bänsch et al. [2004. J. Comput. Phys. 203, 321–343]. We present the adapted variational formulation, and the resulting semi-implicit discretization. Finally several simulations with strong (convex) anisotropies are shown, where the corresponding Wulff shapes are approached as the steady state


Surface diffusion anisotropy parametric finite elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bänsch E., Morin P., and Nochetto R.H. (2005). A finite element method for surface diffusion: the parametric case. J. Comput. Phys. 203:321–343CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bänsch E., Haußer F., Lakkis O., Li B., and Voigt A. (2004). Finite element method for epitaxial growth with attachment-detachment kinetics. J. Comput. Phys. 194:409–434CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Cahn J.W., and Hoffman D.W. (1974). Vector thermodynamics for anisotropic surfaces 2. curved and faceted surfaces. Acta Metall. 22:1205–1214CrossRefGoogle Scholar
  4. 4.
    Clarenz U., Dziuk G., and Rumpf M. (2003). On generalized mean curvature flow in surface processing. In Geometric Analysis and Nonlinear Partial Differential Equations. Springer, Berlin, pp. 217–248Google Scholar
  5. 5.
    Deckelnick, K., Dziuk, G., and Elliott, C. M. (2005). Computation of geometric partial differential equations and mean curvature flow. Acta Numerica Google Scholar
  6. 6.
    Deckelnick K., Dziuk G., and Elliott C.M. (2005). Fully discrete finite element approximation for anisotropic surface diffusion of graphs. SIAM J. Numer. Anal. 43(3):1112–1138CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Dziuk G. (1991). An algorithm for evolutionary surfaces. Numer. Math. 58:603–611CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Mullins W.W. (1957). Theory of thermal grooving. J. Appl. Phys. 28(3):333–339CrossRefGoogle Scholar
  9. 9.
    Taylor J.E. (1978). Crystalline variational problems. Bull. Amer. Math. Soc. 84(4):568–588MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Taylor J.E. (1992). Mean curvature and weighted mean curvature. Acta Metall. Mater. 40(7):1475–1485CrossRefGoogle Scholar
  11. 11.
    Vey S., and Voigt A. (2004). AMDiS – adaptive multidimensional simulations: object oriented software concepts for scientific computing. WSEAS Transac. Syst. 3:1564–1569Google Scholar
  12. 12.
    Wulff G. (1901). Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallflächen. Zeitschr. F. Kristallog. 34:449–530Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Crystal Growth GroupResearch center caesarBonnGermany

Personalised recommendations