Advertisement

Journal of Scientific Computing

, Volume 27, Issue 1–3, pp 377–387 | Cite as

Spectral Element Methods on Unstructured Meshes: Comparisons and Recent Advances

  • Richard Pasquetti
  • Francesca Rapetti
Article

Spectral element approximations for triangles are not yet as mature as for quadrilaterals. Here we compare different algorithms and show that using an integration rule based on Gauss-points for simplices is of interest. We point out that this can be handled efficiently and allows to recover the convergence rate theoretically expected, even with curved elements.

Keywords

spectral elements triangular and quadrangular mesh elements curved elements Fekete points Gauss-Lobatto points 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bos L. (1991). On certain configurations of points in \(\mathbb{R}^n\) which are unisolvent for polynomial interpolation. J. Approx. Theory 64:271–280CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bos L., Taylor M.A., and Wingate B.A. (2001). Tensor product Gauss-Lobatto points are Fekete points for the cube. Math. Comp. 70:1543–1547CrossRefMathSciNetGoogle Scholar
  3. 3.
    Chen Q., and Babuška I. (1995). Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Comput. Methods Appl. Mech. Eng. 128:485–494Google Scholar
  4. 4.
    Chen Q., and Babuška I. (1996). The optimal symmetrical points for polynomial interpolation of real functions in a tetrahedron. Comput. Methods Appl. Mech. Eng. 137:89–94CrossRefGoogle Scholar
  5. 5.
    Cools R. (2002). Advances in multidimensional integration. J. Comput. Appl. Math. 149:1–12CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Demkowicz, L., Walsh, T., Gerdes, K., and Bajer, A. (1998). 2D hp-adaptative finite element package Fortran 90 implementation (2Dhp90), TICAM Report 98–14.Google Scholar
  7. 7.
    Dubiner M. (1991). Spectral methods on triangles and other domains. J. Sci. Comput. 6:345–390CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Hesthaven J.S. (1998). From electrostatic to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal. 35:655–676CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Hesthaven J.S., and Teng C.H. (2000). Stable spectral methods on tetrahedral elements. SIAM J. Sci. Comput. 21:2352–2380CrossRefMathSciNetGoogle Scholar
  10. 10.
    Hesthaven J.S., and Warburton T. (2002). Nodal high-order methods on unstructured grids. J. Comput. Phys. 181: 186–221CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Karniadakis G.E., and Sherwin S.J. (1999). Spectral hp Element Methods for CFD. Oxford University Press, LondonGoogle Scholar
  12. 12.
    Pasquetti R., and Rapetti F. (2004). Spectral element methods on triangles and quadrilaterals: comparisons and applications. J. Comput. Phys. 198:349–362CrossRefADSGoogle Scholar
  13. 13.
    Stroud A.H., and Secrest D. (1966). Gaussian Quadrature Formulas. Prentice Hall, NJGoogle Scholar
  14. 14.
    Stroud A.H. (1971). Approximate Calculations of Multiple Integrals. Prentice Hall, NJGoogle Scholar
  15. 15.
    Taylor M.A., Wingate B.A., and Vincent R.E. (2000). An algorithm for computing Fekete points in the triangle. SIAM J. Numer. Anal. 38:1707–1720CrossRefMathSciNetGoogle Scholar
  16. 16.
    Taylor M.A., and Wingate B.A. (2000). A generalized diagonal mass matrix spectral element method for non-quadrilateral elements. Appl. Num. Math. 33:259–265CrossRefMathSciNetGoogle Scholar
  17. 17.
    Taylor, M. A., Wingate, B. A., and Bos, L. P. (2004). A new algorithm for computing Gauss-like quadrature points, ICOSAHOM 2004 proc., Brown University.Google Scholar
  18. 18.
    Wandzura S., and Xiao H. (2003). Symmetric quadrature rules on a triangle. Comput. Math. Appl. 45:1829–1840CrossRefMathSciNetGoogle Scholar
  19. 19.
    Warburton T., Pavarino L., and Hesthaven J.S. (2000). A pseudo-spectral scheme for the incompressible Navier–Stokes equations using unstructured nodal elements. J. Comput. Phys. 164:1–21CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Laboratory J.-A. DieudonnéUMR CNRS 6621 and University de Nice-Sophia AntipolisNice Cedex 02France

Personalised recommendations