Advertisement

Journal of Scientific Computing

, Volume 27, Issue 1–3, pp 245–256 | Cite as

Direct Minimization of the Discontinuous Least-Squares Spectral Element Method for Viscoelastic Fluids

  • Marc I. Gerritsma
Article

In this paper direct minimization of the discontinuous least-squares spectral element formulation is described. The method will beapplied to the Upper Convected Maxwell (UCM) model which describes a viscoelastic fluid. The new ideas presented in this paper consist of the weak coupling of the fluxes in the least-squares formulations instead of imposing weak continuity of the dependent variables. Furthermore, direct minimization is employed instead of the conventional variational least-squares formulation. The resulting system is solved iteratively using LSQR.

Keywords

Viscoelastic flows spectral element method discontinuous least squares formulation direct minimization LSQR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pontaza J.P., and Reddy J.N. (2003). Spectral/hp least squares finite element formulation for the Navier–Stokes equation. J. Comput. Phys. 190(2):523–549CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Pontaza J.P., and Reddy J.N. (2004). Space-time coupled spectral/hp least squares finite element formulation for the incompressible Navier–Stokes equation. J.Comput.Phys. 197(2):418–459CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Proot M.M.J., and Gerritsma M.I. (2002). A least-squares spectral element formulation for the Stokes problem. J. Sci. Comput. 17(1–3):311–322Google Scholar
  4. 4.
    Proot M.M.J., and Gerritsma M.I. (2002). Least-squares spectral elements applied to the Stokes problem. J. Comput. Phys. 181(2):454–477CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Talwar K.K., Ganpule H.K., and Khomami B. (1994). A note on the selection of spaces in computation of viscoelastic flows using the hp finite element method. J. Non-Newtonian Fluid Mech. 52:293–307CrossRefGoogle Scholar
  6. 6.
    Van Kemenade V., and Deville M.O. (1994). Application of spectral elements to viscoelastic creeping flows. J. Non-Newtonian Fluid Mech. 51:277–308CrossRefGoogle Scholar
  7. 7.
    Gerritsma M.I., and Phillips T.N. (1999). Compatible spectral approximations for the velocity-pressure-stress formulation of the Stokes problem. SIAMJ.Sci.Comput. 20:1530–1550CrossRefMathSciNetGoogle Scholar
  8. 8.
    Jiang B.N. (1993). Non-oscillatory and non-diffusive solution of convection problems by the iteratively reweighted least-squares finite element method. J. Comput. Phys. 105:108–121MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    De Maerschalck B., and Gerritsma M.I. (2005). The use of Chebyshev polynomials in the space-time least-squares spectral element method. Num. Alg. 38:173–196CrossRefMathSciNetGoogle Scholar
  10. 10.
    De Sterck H., Manteuffel T.A., McCormick S.F., and Olson L. (2004). Least-squares finite element methods and algebraic multigrid solvers for linear hyperbolic PDEs. SIAM J. Sci. Comput. 26(1):31–54CrossRefMathSciNetGoogle Scholar
  11. 11.
    De Sterck H., Manteuffel T.A., McCormick S.F., and Olson L. (2004). Numerical conservation properties of H(div)-conforming least-squares finite element methods applied to the Burgers equation. SIAM J. Sci. Comput. 26(5):1573–1597CrossRefMathSciNetGoogle Scholar
  12. 12.
    Alves M.A., Pinho F.T., and Oliveira P.J. (2001). The flow of viscoelastic fluids past a cylinder: finite-volume high-resolution methods. J. Non-Newtonian Fluid Mech. 97:207–232CrossRefGoogle Scholar
  13. 13.
    Owens, R.G., and Phillips, T.N. (2002). Computational Rheology, Imperial College Press.Google Scholar
  14. 14.
    Bochev P.B., and Gunzburger M.D. (1995). Least squares finite methods for the velocity-pressure-stress formulation of the Stokes equations. Comput. Meth. Appl. Mech. . 126(3–4):267–287CrossRefMathSciNetGoogle Scholar
  15. 15.
    Gerritsma M.I., and Proot M.M.J. (2002). Analysis of a discontinuous least squares spectral element method. J. Sci. Comput. 17(1–3):323–333Google Scholar
  16. 16.
    Canuto C., Hussaini M.Y., Quarteroni A., and Zang T. (1987). Spectral Methods in Fluid Dynamics. Springer-Verlag, BerlinGoogle Scholar
  17. 17.
    Karniadakis G.E., and Sherwin S.J. (1999). Spectral/hp Element Methods for CFD. Oxford University Press, OxfordGoogle Scholar
  18. 18.
    Björck Å. (1990). Solution of Equations in R n (Part 1): Least Squares Methods, volumeI of Handbook of Numerical Analysis. North-Holland, AmsterdamGoogle Scholar
  19. 19.
    Paige C.C., and Saunders M.A. (1982). Lsqr: an algorithm for sparse linear equations and sparse least squares. ACM Trns. Math. Softw. 8(1):43–71CrossRefMathSciNetGoogle Scholar
  20. 20.
    Hoitinga, W.,deGroot, R., and Gerritsma, M.I. (2005). Direct minimization method of the least-squares spectral element method using the block QR-decomposition. In preparation.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations