Advertisement

Journal of Scientific Computing

, Volume 30, Issue 2, pp 177–192 | Cite as

A Conservative Isothermal Wall Boundary Condition for the Compressible Navier–Stokes Equations

  • G. B. Jacobs
  • D. A. Kopriva
  • F. Mashayek
Article

Abstract

We present a conservative isothermal wall boundary condition treatment for the compressible Navier-Stokes equations. The treatment is based on a manipulation of the Osher solver to predict the pressure and density at the wall, while specifying a zero boundary flux and a fixed temperature. With other solvers, a non-zero mass flux occurs through a wall boundary, which is significant at low resolutions in closed geometries. A simulation of a lid driven cavity flow with a multidomain spectral method illustrates the effect of the new boundary condition treatment.

Keywords

Wall boundary condition compressible Navier-Stokes high-order multidomain discontinuous Galerkin lid-driven cavity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kopriva D.A. (1998). A staggered-grid multidomain spectral method for the compressible Navier–Stokes equations. J. Comp. Phys. 143, 125–158CrossRefMATHMathSciNetGoogle Scholar
  2. Roe P.L. (1981). Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comp. Phys. 43, 357–372CrossRefMATHMathSciNetGoogle Scholar
  3. Gottlieb D., Gunzburger M., Turkel E. (1982). On numerical boundary treatment for hyperbolic systems. SIAM J. Numer. Anal. 19, 671–690CrossRefMATHMathSciNetGoogle Scholar
  4. Toro E.F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nded. Springer-Verlag, BerlinMATHGoogle Scholar
  5. Kopriva D.A., Kolias J.H. (1996). A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comp. Phys. 125, 244–261CrossRefMATHMathSciNetGoogle Scholar
  6. Ghia U., Ghia K.N., Shin C.T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comp. Phys. 48, 387–411CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA
  2. 2.Department of MathematicsThe Florida State UniversityTallahasseeUSA
  3. 3.Department of Mechanical and Industrial EngineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations