Journal of Scientific Computing

, Volume 27, Issue 1–3, pp 215–230 | Cite as

Building Blocks for Arbitrary High Order Discontinuous Galerkin Schemes



In this article we propose the use of the ADER methodology of solving generalized Riemann problems to obtain a numerical flux, which is high order accurate in time, for being used in the Discontinuous Galerkin framework for hyperbolic conservation laws. This allows direct integration of the semi-discrete scheme in time and can be done for arbitrary order of accuracy in space and time. The resulting fully discrete scheme in time does not need more memory than an explicit first order Euler time-stepping scheme. This becomes possible because of an extensive use of the governing equations inside the numerical scheme itself via the so-called Cauchy–Kovalewski procedure. We give an efficient algorithm for this procedure for the special case of the nonlinear two-dimensional Euler equations. Numerical convergence results for the nonlinear Euler equations results up to 8th order of accuracy in space and time are shown


Discontinuous Galerkin finite elements ADER approach generalized riemann problems Cauchy–Kovalewski procedure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora M., and Roe P.L. (1997). A well-behaved TVD limiter for high-resolution calculations of unsteady flow. J. Comput. Phys. 132:3–11CrossRefMathSciNetMATHADSGoogle Scholar
  2. 2.
    Atkins H., and Shu C.W. (1998). Quadrature-free implementation of the discontinuous Galerkin method for hyperbolic equations. AIAA J 36:775–782CrossRefGoogle Scholar
  3. 3.
    Ben-Artzi M., and Falcovitz J. (1984). A second-order Godunov-type scheme for compressible fluid dynamics. J. Comput. Phys 55:1–32CrossRefADSMathSciNetMATHGoogle Scholar
  4. 4.
    Cockburn, B., Karniadakis, G. E., and Shu, C. W. (2000). Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, SpringerGoogle Scholar
  5. 5.
    Cockburn B., and Shu C.W. (1989). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput 52:411–435CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Cockburn B., Lin S.Y., and Shu C.W. (1989). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys 84:90–113CrossRefMathSciNetMATHADSGoogle Scholar
  7. 7.
    Cockburn B., Hou S., and Shu C.W. (1990). The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput 54:545–581CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Cockburn B., and Shu C.W. (1998). The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys 141:199–224CrossRefMathSciNetMATHADSGoogle Scholar
  9. 9.
    Dumbser M. (2005). Arbitrary High Order Schemes for the Solution of Hyperbolic Conservation Laws in Complex Domains. Shaker Verlag, AachenGoogle Scholar
  10. 10.
    Dumbser M., and Munz C.D. (2005). Arbitrary high order discontinuous Galerkin schemes. Numerical methods for hyperbolic and kinetic problems, In Cordier, S., Goudon, T., Gutnic, M., and Sonnendrucker, E. (eds.), IRMA series in mathematics and theoretical physics, EMS Publishing House, pp. 295–333Google Scholar
  11. 11.
    Dyson, R. W. (2001). Technique for very high order nonlinear simulation and validation. Technical Report TM-2001-210985, NASAGoogle Scholar
  12. 12.
    Hu C., and Shu C.W. (1999). Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys 150:97–127CrossRefADSMathSciNetMATHGoogle Scholar
  13. 13.
    Käser M.A., and Iske A. (2005). ADER schemes on adaptive triangular meshes for scalar conservation laws. J. Comput. Phys 205:486–508CrossRefADSMathSciNetMATHGoogle Scholar
  14. 14.
    Qiu J., Dumbser M., and Shu C.W. (2005). The discontinuous Galerkin method with Lax-Wendroff type time discretizations. Comput. Method Appl. M 194:4528–4543MathSciNetMATHGoogle Scholar
  15. 15.
    Qiu J., and Shu C.W. (2003). Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case. J. Comput. Phys 193:115–135CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Schwartzkopff T., Dumbser M., and Munz C.D. (2004). Fast high order ADER schemes for linear hyperbolic equations. J. Comput. Phys 197:532–539CrossRefADSMATHGoogle Scholar
  17. 17.
    Schwartzkopff T., Munz C.D., and Toro E.F. (2002). ADER: A high order approach for linear hyperbolic systems in 2D. J. Sci. Comput 17(1-4):231–240MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Schwartzkopff T., Munz C.D., Toro E.F., and Millington R.C. (2001). The ADER approach in 2D. In: Sonar T (eds). Discrete Modelling and Discrete Algorithms on Continuum Mechanics. Logos Verlag, Berlin, pp. 207–216Google Scholar
  19. 19.
    Stroud A.H. (1971). Approximate Calculation of Multiple Integrals. Prentice-Hall Inc., Englewood Cliffs, New JerseyMATHGoogle Scholar
  20. 20.
    Titarev V.A., and Toro E.F. (2002). ADER: Arbitrary high order Godunov approach. J. Sci. Comput 17(1-4):609–618MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Titarev V.A., and Toro E.F. (2005). ADER schemes for three-dimensional nonlinear hyperbolic systems. J. Comput. Phys 204:715–736CrossRefADSMathSciNetMATHGoogle Scholar
  22. 22.
    Toro E.F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, second editionGoogle Scholar
  23. 23.
    Toro, E. F., Millington, R. C., and Nejad, L. A. M. (2001). Towards very high order Godunov schemes. In Toro, E. F. (ed.), Godunov Methods. Theory and Applications, Kluwer/Plenum Academic Publishers. pp. 905–938Google Scholar
  24. 24.
    Toro, E. F., and Titarev, V. A. (2002). Solution of the generalized Riemann problem for advection-reaction equations. Proc. Roy. Soc. London, pages 271–281Google Scholar

Copyright information

© Springer Science+Business Media Inc 2005

Authors and Affiliations

  1. 1.Institut für Aerodynamik und GasdynamikUniversity of StuttgartStuttgartGermany

Personalised recommendations