Journal of Scientific Computing

, Volume 24, Issue 1, pp 29–44 | Cite as

Numerical Simulation of High Mach Number Astrophysical Jets with Radiative Cooling

  • Youngsoo Ha
  • Carl L. Gardner
  • Anne Gelb
  • Chi-Wang Shu


Computational fluid dynamics simulations using the WENO-LF method are applied to high Mach number nonrelativistic astrophysical jets, including the effects of radiative cooling. Our numerical methods have allowed us to simulate astrophysical jets at much higher Mach numbers than have been attained (Mach 20) in the literature. Our simulations of the HH 1-2 astrophysical jets are at Mach 80. Simulations at high Mach numbers and with radiative cooling are essential for achieving detailed agreement with the astrophysical images.


astrophysical jets radiative cooling WENO method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Shu C.-W. (1999). High order ENO and WENO schemes for computational fluid dynamics, in High-Order Methods for Computational Physics Lecture Notes in Computational Science and Engineering vol. 9, Springer Verlag, New York pp. 439–582Google Scholar
  2. Norman, M.L., Smarr, L.L., Winkler, K.-H.A., Smith, M.D. 1982Structure and dynamics of supersonic jetsAstronomy and Astrophysics.113285302Google Scholar
  3. Smarr, L.L., Norman, M.L., Winkler, K.-H.A. 1984Shocks, interfaces, and patterns in supersonic jetsPhysica D.1283Google Scholar
  4. Stone, J.M., Norman, M.L. 1993Numerical simulations of protostellar jets with nonequilibrium cooling. 1. Method and 2-dimensional resultsAstrophysical J.413198209CrossRefGoogle Scholar
  5. Stone, J.M., Norman, M.L. 1993Numerical simulations of protostellar jets with nonequilibrium cooling. 2. Models of pulsed jetsAstrophysical J.413210220CrossRefGoogle Scholar
  6. Stone, J.M., Norman, M.L. 1994Numerical simulations of protostellar jets with nonequilibrium cooling. 3. 3-dimensional resultsAstrophysical J.420237246CrossRefGoogle Scholar
  7. Norman, M.L. 1990Fluid-dynamics of astrophysical jetsAnn. New York Acad. Sci.617217233Google Scholar
  8. Lee, C.F., Stone, J.M., Ostriker, E.C., Mundy, L.G. 2001Hydrodynamic simulations of jet- and wind-driven protostellar outflowsAstrophysical J.557429442CrossRefGoogle Scholar
  9. Gardner, C.L. 1986Supersonic interface instabilities of accelerated surfaces and jetsPhys. Fluids.29690695CrossRefGoogle Scholar
  10. Gardner, C.L., Glimm, J., McBryan, O., Menikoff, R., Sharp, D.H., Zhang, Q. 1998The dynamics of bubble growth for Rayleigh–Taylor unstable interfacesPhys. Fluids.31447465CrossRefGoogle Scholar
  11. Zhao, J.H., Burns, J.O., Norman, M.L., Sulkanen, M.E. 1992Instabilities in astrophysical jets. 2. numerical simulations of slab jetsAstrophysical J.38783CrossRefGoogle Scholar
  12. Hardee, P.E., White, R.E., Norman, M.L., Cooper, M.A., Clarke, D.A. 1992Asymmetric morphology of the propagating jet. 2: The effect of atmospheric gradientsAstrophysical J.387460483CrossRefGoogle Scholar
  13. Hardee, P.E., Stone, J.M. 1997The stability of radiatively cooling jets. 1. Linear analysisAstrophysical J.483121135CrossRefGoogle Scholar
  14. Stone, J.M., Xu, J.J., Hardee, P.E. 1997The stability of radiatively cooling jets. 2. Nonlinear evolutionAstrophysical J.483136CrossRefGoogle Scholar
  15. Xu, J.J., Hardee, P.E., Stone, J.M. 2000The stability of radiatively cooled jets in three dimensionsAstrophysical J.543161177CrossRefGoogle Scholar
  16. Müller, E. 1988Simulation of astrophysical fluid flow, in Computational Methods for Astrophysical Fluid FlowSpringer-VerlagBerlin343494Google Scholar
  17. Hester, J.J., Stapelfeldt, K.R., Scowen, P.A. 1998Hubble Space Telescope Wide Field Planetary Camera 2 observations of, HH 1–2Astronomical J.116372395CrossRefGoogle Scholar
  18. Schmutzler, T., Tscharnuter, W.M. 1993Effective radiative cooling in optically thin plasmasAstronomy and Astrophysics.273318330Google Scholar
  19. Liu, X., Osher, S., Chan, T. 1994Weighted essentially non-oscillatory schemesJ Comput. Phys.115200212CrossRefMathSciNetGoogle Scholar
  20. Jiang, G.-S., Shu, C.-W. 1996Efficient implementation of weighted ENO schemesJ Comput. Phy.126202228CrossRefGoogle Scholar
  21. Balsara, D., Shu, C.-W. 2000Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracyJ. Comput. Phy.160405452CrossRefMathSciNetGoogle Scholar
  22. Shu, C.-W. 1998Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation lawsCockburn, B.Johnson, C.Shu, C.-W.Tadmor, E. eds. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations Lecture Notes in Mathematics, vol. 1697.Springer VerlagNew York325432Google Scholar
  23. Shu, C.-W., Osher, S. 1998Efficient implementation of essentially non-oscillatory shock capturing schemesJ Comput. Phy.77439471CrossRefGoogle Scholar
  24. Gottlieb, S., Shu, C.-W., Tadmor, E. 2001Strong stability preserving high order time discretization methodsSIAM Review4389112CrossRefGoogle Scholar
  25.∼claw/. R. J. LeVeque’s CLAWPACK websiteGoogle Scholar
  26. LeVeque, R.J. 2002Finite Volume Methods for Hyperbolic ProblemsCambridge University PressCambridge, UKGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Youngsoo Ha
    • 1
  • Carl L. Gardner
    • 2
  • Anne Gelb
    • 2
  • Chi-Wang Shu
    • 3
  1. 1.Division of Applied MathematicsKorean Advanced Institute of Science and TechnologyTaejonSouth Korea
  2. 2.Department of Mathematics and StatisticsArizona State UniversityTempeUSA
  3. 3.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations