Journal of Scientific Computing

, Volume 22, Issue 1–3, pp 385–411 | Cite as

Selecting the Numerical Flux in Discontinuous Galerkin Methods for Diffusion Problems

  • Robert M. Kirby
  • George Em Karniadakis


In this paper we present numerical investigations of four different formulations of the discontinuous Galerkin method for diffusion problems. Our focus is to determine, through numerical experimentation, practical guidelines as to which numerical flux choice should be used when applying discontinuous Galerkin methods to such problems. We examine first an inconsistent and weakly unstable scheme analyzed in Zhang and Shu, Math. Models Meth. Appl. Sci. (M3AS)13, 395–413 (2003), and then proceed to examine three consistent and stable schemes: the Bassi–Rebay scheme (J. Comput. Phys.131, 267 (1997)), the local discontinuous Galerkin scheme (SIAM J. Numer. Anal.35, 2440–2463 (1998)) and the Baumann–Oden scheme (Comput. Math. Appl. Mech. Eng.175, 311–341 (1999)). For an one-dimensional model problem, we examine the stencil width, h-convergence properties, p-convergence properties, eigenspectra and system conditioning when different flux choices are applied. We also examine the ramifications of adding stabilization to these schemes. We conclude by providing the pros and cons of the different flux choices based upon our numerical experiments.


Discontinuous Galerkin methods spectral/hp elements parabolic flux choices stabilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, D. N., Brezzi, F., Cockburn, B., Marini, D. 2000Discontinuous Galerkin Methods for Elliptic Problems.Cockburn, B.Karniadakis, G.E.Shu, C.-W. eds. Discontinuous Galerkin Methods: Theory Computation and ApplicationsSpringerBerlinGoogle Scholar
  2. Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D. 2002Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM J. Numer. Anal.391749CrossRefGoogle Scholar
  3. Atkins, H., and Shu, C.-W. (1999). Analysis of the discontinuous Galerkin method applied to the diffusion operator. In 14th AIAA Computational Fluid Dynamics Conference AIAA, pp. 99–3306.Google Scholar
  4. Bassi,  F., Rebay, S. 1997A high-order accurate discontinuous finite element method forthe numerical solution of the compressible Navier–Stokes equations.J. Comp. Phys.131267CrossRefGoogle Scholar
  5. Baumann, C. E., Oden, J. T. 1999A discontinuous hp finite element method for convection-diffusion problemsComp. Meth. Appl. Mech. Eng.175311341CrossRefGoogle Scholar
  6. Brezzi, F., Manzini, G., Marini, D., Pietra, P., and Russo, A. (1999). Discontinuous finite elements for diffusion problems. Atti Convegno in onore di F. Brioschi (Milano 1997) Istituto Lombardo Accademia di Scienze e Lettere, pp. 197–217.Google Scholar
  7. Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A. 1987Spectral Methods in Fluid MechanicsSpringer-VerlagNew YorkGoogle Scholar
  8. Castillo, P. 2002Performance of discontinuous Galerkin Methods for elliptic problemsSIAM J. Numer. Anal.24524547Google Scholar
  9. Cockburn, B., Shu, C.-W. 1998The local discontinuous Galerkin for convection-diffusion systemsSIAM J. Numer. Anal.3524402463CrossRefGoogle Scholar
  10. Cockburn, B., Karniadakis, G. E., Shu, C.-W. 2000The development of discontinuous Galerkin methodsCockburn, B.Karniadakis, G. E.Shu, C.-W. eds. Discontinuous Galerkin Methods: Theory Computation and ApplicationsSpringerBerlinGoogle Scholar
  11. Helenbrook, B., Mavriplis, D., and Atkins, H. (2003). Analysis of p-multigrid for continuous and discontinuous finite element discretizations. In 16th AIAA Computational Fluid Dynamics Conference AIAA, pp. 99–3989.Google Scholar
  12. Hesthaven, J. S., Gottlieb, D. 1996A stable penalty method for the compressible Navier–Stokes Equations. I. Open boundary conditions.SIAM J. Sci. Comp.17579612CrossRefGoogle Scholar
  13. Rivière, B., Wheeler, M. F., Girault, V. 2001A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problemsSIAM J. Numer. Anal.39902931CrossRefGoogle Scholar
  14. Romkes, A., Prudhomme, S., Tinsley Oden, J. 2003A posteriori error estimation for a new stabilized discontinuous Galerkin methodAppl. Math. Lett.16447452CrossRefMathSciNetGoogle Scholar
  15. Shu, C. -W. 2001Different formulations of the discontinuous Galerkin method for the viscous termsShi, Z.-C.Mu, M.Xue, W.Zou, J. eds. Advances in Scientific ComputingScience Pressmascou144155Google Scholar
  16. Zhang, M., Shu, C.-W. 2003An analysis of three different formulations of the discontinuous Galerkin method for diffusion equationsMath. Models Meth. Appl. Sci.13395413(M3AS)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.School of ComputingUniversity of UtahUSA
  2. 2.Division of Applied MathematicsBrown UniversityUSA

Personalised recommendations