Journal of Scientific Computing

, Volume 22, Issue 1–3, pp 25–45 | Cite as

A Family of Discontinuous Galerkin Finite Elements for the Reissner–Mindlin Plate

  • Douglas N. Arnold
  • Franco Brezzi
  • L. Donatella Marini


We develop a family of locking-free elements for the Reissner–Mindlin plate using Discontinuous Galerkin (DG) techniques, one for each odd degree, and prove optimal error estimates. A second family uses conforming elements for the rotations and nonconforming elements for the transverse displacement, generalizing the element of Arnold and Falk to higher degree.


Discontinuous Galerkin Reissner–Mindlin plates locking-free finite elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agmon, S. 1965Lectures on Elliptic Boundary Value ProblemsVan Nostrand Mathematical StudiesPrinceton, NJGoogle Scholar
  2. Arnold, D.N. 1982An interior penalty finite element method with discontinuous elementsSIAM J. Numer. Anal.19742760CrossRefGoogle Scholar
  3. Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D. (2000). Discontinuous Galerkin methods for elliptic problems. In Discontinuous Galerkin Methods (Newport, RI, 1999), Lecture Notes Computational Science Engineering Vol. 11, Springer, Berlin, pp.89–101.Google Scholar
  4. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D. 2002Unified analysis of discontinuous Galerkin methods for elliptic problemsSIAM J. Numer. Anal.3917491779CrossRefGoogle Scholar
  5. Arnold, D.N., Falk, R.S. 1989A uniformly accurate finite element method for the Reissner–Mindlin plateSIAM J. Numer. Anal.2612761290CrossRefGoogle Scholar
  6. Auricchio, F., Lovadina, C. 1999Partial selective reduced integration schemes and kinematically linked interpolations for plate bending problemsMath. Models Meth. Appl. Sci.9693722CrossRefGoogle Scholar
  7. Auricchio, F., Lovadina, C. 2001Analysis of kinematic linked interpolation methods for Reissner–Mindlin plate problemsComput. Meth. Appl. Mech. Eng.1901819Google Scholar
  8. Auricchio, F., Taylor, R.L. 1994A shear deformable plate element with an exact thin limitComput. Meth. Appl. Mech. Eng.118393412CrossRefGoogle Scholar
  9. Bathe, K.J. 1994Finite Element ProceduresPrentice-HallEnglewood Cliffs, NJGoogle Scholar
  10. Brenner, S.C. 2003Poincaré–Friedrichs inequalities for piecewise H 1 functionsSIAM J. Numer. Anal.41306324CrossRefGoogle Scholar
  11. Brenner, S.C. 2004Korn’s inequalities for piecewise H1 vector fieldsMath. Comput.7310671087CrossRefGoogle Scholar
  12. Brezzi, F., Bathe, K.J., Fortin, M. 1989Mixed-interpolated elements for Reissner–Mindlin platesInt. J. Numer. Meth. Eng.2817871801CrossRefGoogle Scholar
  13. Brezzi, F., Douglas, J.,Jr., Marini, L. D. 1985Two families of mixed finite elements for second order elliptic problemsNumer. Math.47217235CrossRefGoogle Scholar
  14. Brezzi, F., Fortin, M. 1999Mixed and Hybrid Finite Element MethodsSpringerNew YorkGoogle Scholar
  15. Brezzi, F., Fortin, M., Stenberg, R. 1991Error analysis of mixed-interpolated elements for Reissner–Mindlin platesMath. Models Meth. Appl. Sci.1125151CrossRefGoogle Scholar
  16. Brezzi, F., Marini, L.D. 2003A nonconforming element for the Reissner–Mindlin plateComput. Struct.81515522CrossRefGoogle Scholar
  17. Bucalem, M.L., Bathe, K.J. 1997Finite element analysis of shell structuresArch. Comput. Meth. Eng.4361Google Scholar
  18. Bucalem, M.L., Bathe, K.J. 1993Higher-order MITC general shell elementsInt.J.Numer.Meth.Eng.3637293754CrossRefGoogle Scholar
  19. Chapelle, D., Bathe, K.J. 1998Fundamental considerations for the finite element analysis of shell structuresComput. Struct.661936CrossRefGoogle Scholar
  20. Chapelle, D., Stenberg, R. 1999Stabilized finite element formulations for shells in a bending dominated stateSIAMJ.Numer.Anal.363273CrossRefGoogle Scholar
  21. Duran, R., Liberman, E. 1992On mixed finite-element methods for the Reissner–Mindlin plate modelMath.Comput.58561573Google Scholar
  22. Flores, F.G., Oñate, E., Zaráte, F. 1995New assumed strain triangles for nonlinear shell analysisComput.Mech.17107114Google Scholar
  23. Hansbo, P., Larson, M.G. 2000Discontinuous Galerkin and the Crouzeix–Raviart element: Application to ElasticityChalmers University of TechnologySwedenChalmers Finite Element Center Preprint 2000-9Google Scholar
  24. Hughes, T.J.R. 1987The Finite Element Method: Linear Static and Dynamic Finite Element AnalysisPrentice-HallEnglewood Cliffs, NJGoogle Scholar
  25. Lovadina, C. 1996A new class of mixed finite element methods for Reissner–Mindlin platesSIAM J.Numer.Anal.3324572467CrossRefGoogle Scholar
  26. Lovadina, C. 1998Analysis of a mixed finite element method for the Reissner–Mindlin plate problemsComput. Meth. Appl. Mech. Eng.1637185CrossRefGoogle Scholar
  27. Ming, P.-B., Shi, Z.-C. 2001Nonconforming rotated Q1 element for Reissner–Mindlin plateMath.Models Meth.Appl.Sci.1113111342CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Douglas N. Arnold
    • 1
  • Franco Brezzi
    • 2
  • L. Donatella Marini
    • 2
  1. 1.Institute for Mathematics and its ApplicationsUniversity of MinnesotaMinneapolisUSA
  2. 2.Dipartimento di MatematicaUniversità di Pavia, IMATI-CNRPaviaItaly

Personalised recommendations