Skip to main content

Advertisement

Log in

The Evolution of Climatic Niches and its Role in Shaping Diversity Patterns in Diprotodontid Marsupials

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The interplay between niche conservatism and niche evolution has been suggested to play a key role in shaping the biogeographical history of a given clade. Here, we integrate climatic data associated with the distribution range of 86 diprotodontid species and their phylogenetic relationships in order to examine the evolutionary dynamics of ecological niches of Diprotodontia and explore the link between diversification, niche evolution, and trends in biodiversity over space in this iconic group. Both mean annual temperature (MAT) and annual precipitation (AP) best-fitted punctuated modes of evolution indicate that climatic niche evolution in diprotodonts is speciational. Among-clade variation in rates of climatic niche evolution was correlated with variation in rates of lineage diversification, which reinforces the view that rapid shifts in climatic niches promote speciation. We found that both climatic attributes, AP and MAT, exhibited a pattern according to which species richness progressively declined along a gradient from ancestral to derived climatic conditions and, in turn, it was negatively correlated to niche breadth. However, correlation between niche breadth and niche position was not similar for both climatic traits, as these differ with respect to the relative position of the zone colonized by the most recent common ancestor within its corresponding axis. Diprotodontia diversity decreased while phylogenetic clustering increased, suggesting that niche conservatism associated with ancestral climate probably drives most of variation in species richness in this region. Our study shows that the diversification of diprotodontid marsupials appears to have occurred against a background of moderate phylogenetic niche consevatism, which largely determines the current distribution of this group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackerly D (2009) Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc Natl Acad Sci USA 106: 19699–19706

    Article  CAS  Google Scholar 

  • Algar AC, Mahler DL (2016) Area, climate heterogeneity, and the response of climate niches to ecological opportunity in island radiations of Anolis lizards. Global Ecol Biogeogr 25: 781–791

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15: 365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57: 717–745

    Article  PubMed  Google Scholar 

  • Bonetti MF, Wiens JJ (2014) Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. Proc R Soc B 281: 20133229

    Article  PubMed  PubMed Central  Google Scholar 

  • Boucher FC, Thuiller W, Davies TJ, Lavergne S (2014) Neutral biogeography and the evolution of climatic niches. Am Nat 183: 573–584

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown JH (2014) Why are there so many species in the tropics? J Biogeogr 41: 8–22

    Article  PubMed  Google Scholar 

  • Butler MA, King AA (2004) Phylogenetic comparative analysis: a modelling approach for adaptive evolution. Am Nat 164: 683–695

    Article  PubMed  Google Scholar 

  • Buckley LB, Davies TJ, Ackerly DD, Kraft NJB, Harrison SP, Anacker BL, Cornell HV, Damschen EI, Grytnes JA, Hawkins BA, McCain CM, Stephens PR, Wiens JJ (2010) Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc R Soc B 277: 2131–2138

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrne M, Yeates DK, Joseph L, Kearney M, Bowler J, Williams MAJ, Cooper S, Donnellan SC, Keogh JS, Leys R, Melville J, Murphy DJ, Porch N, Wyrwoll K-H (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol Ecol 17: 4398–4417

    Article  CAS  PubMed  Google Scholar 

  • Cardillo M (2011) Phylogenetic structure of mammal assemblages at large geographical scales: linking phylogenetic community ecology with macroecology. Phil Trans R Soc Lond B 366: 2545–2553

    Article  Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12: 693–715

    Article  PubMed  Google Scholar 

  • Clavel J, Escarguel G, Merceron G (2015) mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Met Ecol Evol 6: 1311–1319

    Article  Google Scholar 

  • Chejanovski Z, Wiens JJ (2014) Climatic niche breadth and species richness in temperate treefrogs. J Biogeogr 41: 1936–1946

    Article  Google Scholar 

  • Cook LG, Hardy NB, Crisp MD (2015) Three explanations for biodiversity hotspots: small range size, geographical overlap and time for species accumulation. An Australian case study. New Phytol 207: 390–400

    Article  PubMed  Google Scholar 

  • Cooney CR, Seddon N, Tobias JA, Phillimore A (2016) Widespread correlations between climatic niche evolution and species diversification in birds. J Anim Ecol 85: 869–878

    Article  Google Scholar 

  • Cooper N, Jetz W, Freckleton RP (2010) Phylogenetic comparative approaches for studying niche conservatism. J Evol Biol 23: 2529–2539

    Article  CAS  PubMed  Google Scholar 

  • Crisp MD, Cook LG (2012) Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol 196: 681–694

    Article  PubMed  Google Scholar 

  • Dawson TJ (1995) Kangaroos: Biology of the Largest Marsupials. UNSW Press, Sydney.

    Google Scholar 

  • Dormann CF, Gruber B, Winter M, Herrmann D (2010) Evolution of climate niches in European mammals? Biol Lett 6: 229–232

    Article  PubMed  Google Scholar 

  • Duran A, Meyer AL, Pie MR (2013) Climatic niche evolution in New World monkeys (Platyrrhini). PLoS One 8: e83684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duran A, Pie MR (2015) Tempo and mode of climatic niche evolution in primates. Evolution 69: 2496–2506

    Article  PubMed  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in Paleobiology. Freeman, San Francisco, pp 82–115

  • Evans ME, Smith SA, Flynn RS, Donoghue MJ (2009) Climate, niche evolution, and diversification of the “bird-cage” evening primroses (Oenothera, sections Anogra and Kleinia). Am Nat 173: 225–240

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125: 1–15

    Article  Google Scholar 

  • Flannery T (1995) Mammals of New Guinea. Revised and updated edition. Reed Books, Chatswood, New South Wales

    Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19: 207–233

    Article  Google Scholar 

  • García-Navas V, Rodríguez-Rey M, Westerman M (2018) Bursts of morphological and lineage diversification in modern dasyurids, a “classic” adaptive radiation. Biol J Linn Soc

  • Geiser F (1994) Hibernation and daily torpor in marsupials: a review. Aust J Zool 42: 1–16

    Article  Google Scholar 

  • Gillman LN, Wright SD (2014) Species richness and evolutionary speed: the influence of temperature, water and area. J Biogeogr 41: 39–51

    Article  Google Scholar 

  • Hansen TF (1997) Stabilizing selection and the comparative analysis of adaptation. Evolution 51: 1341–1351

    Article  PubMed  Google Scholar 

  • Harmon LJ, Schulte JA, Larson A, Losos JB (2003) Tempo and mode of evolutionary radiation in iguanian lizards. Science 301: 961–964

    Article  CAS  PubMed  Google Scholar 

  • Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24: 129–131

    Article  CAS  PubMed  Google Scholar 

  • Hawkins BA, Diniz-Filho JAF, Soeller SA (2005) Water links the historical and contemporary components of the Australian bird diversity gradient. J Biogeogr 32: 1035–1042

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) The WorldClim interpolated global terrestrial climate surfaces. Version 1.3. Available at: http://biogeo.berkeley.edu/. Last accessed 1 May 2017

  • Hutter CR, Guayasamin JM, Wiens JJ (2013) Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. Ecol Lett 16: 1135–1144

    Article  PubMed  Google Scholar 

  • IUCN (2017) The IUCN Red List of Threatened Species 2016. http://www.iucnredlist.org. Retrieved on 20th July 2017

  • Jara-Arancio P, Arroyo MT, Guerrero PC, Hinojosa LF, Arancio G, Méndez MA (2013) Phylogenetic perspectives on biome shifts in Leucocoryne (Alliaceae) in relation to climatic niche evolution in western South America. J Biogeogr 41: 328–338

    Article  Google Scholar 

  • Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett 12: 949–960

    Article  PubMed  Google Scholar 

  • Kembel S, Cowan P, Helmus M, Cornwell W, Morlon H, Ackerly D, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinform 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Kozak KH, Wiens JJ (2006) Does niche conservatism drive speciation? A case study in North American salamanders. Evolution 60: 2604–2621

    Article  PubMed  Google Scholar 

  • Kozak KH, Wiens JJ (2010a) Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol Lett 13: 1378–1389

    Article  PubMed  Google Scholar 

  • Kozak KH, Wiens JJ (2010b) Niche conservatism drives elevational diversity patterns in Appalachian salamanders. Am Nat 176: 40–54

    Article  PubMed  Google Scholar 

  • Labra A, Pienaar J, Hansen TF (2009) Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking. Am Nat 174: 204–220

    Article  PubMed  Google Scholar 

  • Lanier HC, Edwards DL, Knowles LL (2013) Phylogenetic structure of vertebrate communities across the Australian arid zone. J Biogeogr 40: 1059–1070

    Article  Google Scholar 

  • Lin L, Wiens JJ (2017) Comparing macroecological patterns across continents: evolution of climatic niche breadth in varanid lizards. Ecography 40: 960–970

    Article  Google Scholar 

  • Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11: 995–1003.

    Article  PubMed  Google Scholar 

  • Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457: 830–836

    Article  CAS  PubMed  Google Scholar 

  • Lv X, Xia L, Ge D, Wu Y, Yang Q (2016) Climatic niche conservatism and ecological opportunity in the explosive radiation of arvicoline rodents (Arvicolinae, Cricetidae). Evolution 47: 1094–1104

    Article  Google Scholar 

  • Meredith RW, Westerman M, Springer MS (2008) A phylogeny and timescale for the living genera of kangaroos and kin (Macropodiformes: Marsupialia) based on nuclear DNA sequences. Aust J Zool 56: 395–410

    Article  CAS  Google Scholar 

  • Miller ET, Zanne AE, Ricklefs RE (2013) Niche conservatism constrains Australian honeyeater assemblages in stressful environments. Ecol Lett 16: 1186–1194

    Article  CAS  PubMed  Google Scholar 

  • Mitchell KJ, Pratt RC, Watson LN, Gibb GC, Llamas B, Kasper M, Edson J, Hopwood B, Male D, Armstrong KN, Meyer M, Hofreiter M, Austin J, Donnellan SC, Lee MS, Phillips MJ, Cooper A (2014) Molecular phylogeny, biogeography, and habitat preference evolution of marsupials. Mol Biol Evol 31: 2322–2330

    Article  CAS  PubMed  Google Scholar 

  • Morinière J, Van Dam MH, Hawlitschek O, Bergsten J, Michat MC, Hendrich L, Ribera I, Toussaint EFA, Balke M (2016) Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods. Sci Rep 6: 26340

  • Münkemüller T, Boucher F, Thuiller W, Lavergne S (2015) Phylogenetic niche conservatism - common pitfalls and ways forward. Funct Ecol 29: 627–639

    Article  PubMed  PubMed Central  Google Scholar 

  • Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombart T, Schiffers K, Thuiller W (2012) How to measure and test phylogenetic signal. Met Ecol Evol 3: 743–756

    Article  Google Scholar 

  • Olalla-Tárraga MÁ, González-Suárez M, Bernardo-Madrid R, Revilla E, Villalobos F (2017) Contrasting evidence of phylogenetic trophic niche conservatism in mammals worldwide. J Biogeogr 44: 99–110

    Article  Google Scholar 

  • Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W (2012) caper: comparative analyses of phylogenetics and evolution in R. Version 0.5

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo, MB (2011) Ecological Niches and Geographic Distributions. Princeton University Press, Princeton

    Book  Google Scholar 

  • Pie MR, Campos LF, Meyer ALS, Duran A (2017) The evolution of climatic niches in squamate reptiles. Proc R Soc B 284: 20170268

    Article  PubMed  PubMed Central  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6: 7–11

    Google Scholar 

  • Powney GD, Grenyer R, Orme CDL, Owens IPF, Meiri S (2010) Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Global Ecol Biogeogr 19: 386–396

    Article  Google Scholar 

  • Pyron RA, Burbrink FT (2012) Trait-dependent diversification and the impact of palaeontological data on evolutionary hypothesis testing in New World ratsnakes (tribe Lampropeltini). J Evol Biol 25: 497–508

    Article  CAS  PubMed  Google Scholar 

  • Pyron AR, Costa GC, Patten MA, Burbrink FT (2015) Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biol Rev 90: 1248–1262

    Article  PubMed  Google Scholar 

  • Pyron RA, Wiens JJ (2013) Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc R Soc B 280: 20131622

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabosky DL, Donnellan SC, Grundler M, Lovette IJ (2014) Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Syst Biol 63: 610–627

    Article  PubMed  Google Scholar 

  • Rabosky DL, Donnellan SC, Talaba AL, Lovette IJ (2007) Exceptional among-lineage variation in diversification rates during the radiation of Australia’s most diverse vertebrate clade. Proc R Soc B 274: 2915–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Huang H, Brown JW, Larson J (2017) BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Meth Ecol Evol 5: 701–707

    Article  Google Scholar 

  • Rabosky DL, Huang H (2015) A robust semi-parameteric test for trait-dependent diversification. Syst Biol 65: 181–193

    Article  PubMed  Google Scholar 

  • Rabosky DL, Santini F, Eastman JT, Smith SA, Sidlauskas BL, Chang J, Alfaro ME (2013) Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat Commun 4: 1958

    Article  PubMed  CAS  Google Scholar 

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Met Ecol Evol 3: 217–223

    Article  Google Scholar 

  • Revell LJ, Harmon LJ, Collar DC (2008) Phylogenetic signal, evolutionary process, and rate. Syst Biol 57: 591–601

    Article  PubMed  Google Scholar 

  • Ritchie EG, Martin JK, Johnson CN, Fox BJ (2009) Separating the influences of environment and species interactions on patterns of distribution and abundance: competition between large herbivores. J Anim Ecol 78: 724–731

    Article  PubMed  Google Scholar 

  • Rix MG, Edwards DL, Byrne M, Harvey MS, Joseph L, Roberts JD (2015) Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot. Biol Rev 90: 762–793

    Article  PubMed  Google Scholar 

  • Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65: 514–527

    Article  Google Scholar 

  • Rolland J, Condamine FL, Jiguet F, Morlon H (2014) Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol 12: e1001775

    Article  PubMed  PubMed Central  Google Scholar 

  • Salariato DL, Zuloaga FO (2016) Climatic niche evolution in the Andean genus Menonvillea (Cremolobeae: Brassicaceae). Org Div Evol 17: 11–28

    Article  Google Scholar 

  • Schnitzler J, Graham CH, Dormann CF, Schiffers K, Linder PH (2012) Climatic niche evolution and species diversification in the Cape flora, South Africa. J Biogeogr 39: 2201–2211

    Article  Google Scholar 

  • Seeholzer GF, Claramunt S, Brumfield RT (2017) Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae). Evolution 71: 702–715

    Article  PubMed  Google Scholar 

  • Smith BT, Bryson RW, Houston D, Klicka J (2012) An asymmetry in niche conservatism contributes to the latitudinal species diversity gradient in New World vertebrates. Ecol Lett 15: 1318–1325

    Article  PubMed  Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10: 1115–1123

    Article  PubMed  Google Scholar 

  • Stevens RD (2011) Relative effects of time for speciation and tropical niche conservatism on the latitudinal diversity gradient of phyllostomid bats. Proc R Soc B 278: 2528–2536

    Article  PubMed  PubMed Central  Google Scholar 

  • Stroud JT, Losos, JB (2016) Ecological opportunity and adaptive radiation. Annu Rev Ecol Evol Syst 47: 507–532

    Article  Google Scholar 

  • Title PO, Burns KJ (2015) Rates of climatic niche evolution are correlated with species richness in a large and ecologically diverse radiation of songbirds. Ecol Lett 18: 433–440

    Article  PubMed  Google Scholar 

  • Van Dyck S, Gynther I, Baker A (2013) Field Companion to the Mammals of Australia. New Holland Publishers, Sydney

    Google Scholar 

  • Velasco J, Martínez-Meyer E, Flores-Villela O, García A, Algar AC, Köhler G, Daza JM (2015) Climatic niche attributes and diversification in Anolis lizards. J Biogeogr 43: 134–144

    Article  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Evol Syst 33: 475–505

    Article  Google Scholar 

  • Wiens JJ (2004) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58: 193–197

    Article  PubMed  Google Scholar 

  • Wiens JJ (2011) The causes of species richness patterns across space, time, and clades and the role of “ecological limits.” Rev Biol 86: 75–96

    Article  PubMed  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies TJ, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13: 1310–1324

    Article  PubMed  Google Scholar 

  • Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology, and species richness. Trends Ecol Evol 19: 639–644

    Article  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36: 519–539

    Article  Google Scholar 

  • Wiens JJ, Kozak KH, Silva N (2013) Diversity and niche evolution along aridity gradients in North American lizards (Phrynosomatidae). Evolution 67: 1715–1728

    Article  PubMed  Google Scholar 

  • Wiens JJ, Parra-Olea G, García-París M, Wake DB (2007) Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders. Proc R Soc B 274: 919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Kieren J. Mitchell and Prof. Alan Cooper kindly provided the phylogenetic tree. Ben Whittaker checked the English. Dr. John R. Wible, Dr. Andrés Posso-Terranova, and anonymous reviewer provided valuable comments that improved the original manuscript. VGN was supported by a “Juan de la Cierva” postdoctoral fellowship from Spanish Ministry of Economy and Competitiveness (FPDI-2013-16828). MRR was supported by a PhD fellowship funded by Aquainvad-ED, a Marie Skłodowska-Curie Innovative Training Network H2020-MSCA-ITN-2014-ETN-642197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente García-Navas.

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Navas, V., Rodríguez-Rey, M. The Evolution of Climatic Niches and its Role in Shaping Diversity Patterns in Diprotodontid Marsupials. J Mammal Evol 26, 479–492 (2019). https://doi.org/10.1007/s10914-018-9435-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-018-9435-z

Keywords

Navigation