Changes in Ontogenetic Allometry and their Role in the Emergence of Cranial Morphology in Fossorial Spiny Rats (Echimyidae, Hystricomorpha, Rodentia)

  • William Corrêa Tavares
  • Leila Maria Pessôa
  • Héctor N. Seuánez
Original Paper

Abstract

All evolutionary modifications of morphology in adult animals presuppose occurrence of changes in developmental programming. While some developmental changes affect rates of trait growth during the entire ontogeny, other developmental changes modify timing and growth rates during limited stages, usually in early development. Identifying which kind of these alterations are more frequent during evolution is crucial for understanding processes influencing the emergence of phenotypic diversity and specializations. Here, we used an allometric approach to assess the relative impact of these two kinds of ontogenetic alterations in the emergence of specialized skull morphology in fossorial spiny rats, comparing them with closely related, more generalist, terrestrial species. Univariate and multivariate analyses of adult shape consistently showed that fossorial spiny rats remarkably differed from terrestrial species, mainly by showing shorter and lower rostrum and more expanded auditory bullae, a set of traits usually considered specializations for life underground. Slopes and elevations of allometric trajectories of cranial traits were estimated for each species and compared with Analysis of Covariance, Likelihood-ratio tests, and Analysis of Variance based on Burnaby-corrected data. These tests showed that changes in allometric elevations were more recurrent during evolution and more congruent with the change in adult morphology than change in allometric slopes. These findings indicated that developmental changes modifying timing and growth rates during limited stages of early development were more frequent than alterations of trait covariation patterns along the entire ontogeny. This kind of developmental change accounts for a large effect on diversification of adult morphology and emergence of burrowing specializations in spiny rats.

Keywords

Caviomorphs Development Fossoriality Neotropical rodents Skull 

Notes

Acknowledgments

We are grateful to the following curators for access to collections: J.A. de Oliveira (Museu Nacional - Universidade Federal do Rio de Janeiro) and M. de Vivo (Museu de Zoologia da Universidade de São Paulo. WCT initiated this study during his M.Sc. training in Programa de Pós-Graduação em Zoologia (Museu Nacional, Universidade Federal do Rio de Janeiro), with a fellowship from Conselho Nacional de Pesquisa de Desenvolvimento Tecnológico (CNPq). WCT concluded this study in the Department of Genetics (Instituto de Biologia, Universidade Federal do Rio de Janeiro), with a postdoctoral fellowship from Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ/CAPES grant 209101/E_44/2014.

Supplementary material

10914_2018_9433_MOESM1_ESM.pdf (406 kb)
Online Resource 1 Bonferroni correction of ANOVA for identifying inter-specific variation in log-shape-corrected measurements (PDF 406 kb)
10914_2018_9433_MOESM2_ESM.pdf (413 kb)
Online Resource 2 Parameters of allometric trajectories of each trait per species (PDF 412 kb)
10914_2018_9433_MOESM3_ESM.pdf (534 kb)
Online Resource 3 Results of pairwise tests of heterogeneity in allometric slopes and elevations (PDF 533 kb)

References

  1. Alberch P, Gould SJ, Oster GF, Wake DB (1997) Size and shape in ontogeny and phylogeny size. Paleobiology 5:296–317CrossRefGoogle Scholar
  2. Álvarez A, Perez SI, Verzi DH (2013) Ecological and phylogenetic dimensions of cranial shape diversification in South American caviomorph rodents (Rodentia: Hystricomorpha). Biol J Linn Soc 110:898–913.  https://doi.org/10.1111/bij.12164 CrossRefGoogle Scholar
  3. Álvarez A, Perez SI, Verzi DH (2015) The role of evolutionary integration in the morphological evolution of the skull of caviomorph rodents (Rodentia: Hystricomorpha). Evol Biol 42:312–327.  https://doi.org/10.1007/s11692-015-9326-7 CrossRefGoogle Scholar
  4. Bezerra AMR, Bonvicino CR (2015) Genus Clyomys Thomas, 1916. In: Patton JL, Pardiñas UFJ, D’Elía G (eds) Mammals of South America, Volume 2 (Rodents). The University of Chicago Press, Chicago, pp 935–937Google Scholar
  5. Bezerra AMR, de Oliveira JA, Bonvicino CR (2016) Clyomys laticeps (Rodentia: Echimyidae). Mammal Species 48:83–90.  https://doi.org/10.1093/mspecies/sew009 CrossRefGoogle Scholar
  6. Bonvicino CR, Bezerra AMR (2015) Genus Euryzygomatomys Goeldi, 1901. In: Patton JL, Pardiñas UFJ, D’Elía G (eds) Mammals of South America, Volume 2 (Rodents). The University of Chicago Press, Chicago, pp 937–940Google Scholar
  7. Burnaby TP (1966) Growth-invariant discriminant functions and generalized distances. Biometrics 22:96–110.  https://doi.org/10.2307/2528217 CrossRefGoogle Scholar
  8. Carroll SB (2008) Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36.  https://doi.org/10.1016/j.cell.2008.06.030 CrossRefPubMedGoogle Scholar
  9. Carvalho GAS, Salles LO (2004) Relationships among extant and fossil echimyids (Rodentia: Hystricognathi). Zool J Linn Soc 142:445–477.  https://doi.org/10.1111/j.1096-3642.2004.00150.x CrossRefGoogle Scholar
  10. Cheverud JM (1982) Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36:499-516.  https://doi.org/10.2307/2408096 CrossRefPubMedGoogle Scholar
  11. Emmons LH, Leite YLR, Patton JL (2015) Family Echimyidae Gray, 1825. In: Patton JL, Pardiñas UFJ, Elía G (eds) Mammals of South America, Volume 2 (Rodents). The University of Chicago Press, Chicago, pp 878–880Google Scholar
  12. Fabre P-H, Galewski T, Tilak M, Douzery EJP (2013) Diversification of South American spiny rats (Echimyidae): a multigene phylogenetic approach. Zool Scr 42:117–134.  https://doi.org/10.1111/j.1463-6409.2012.00572.x CrossRefGoogle Scholar
  13. Fabre P-H, Upham NS, Emmons LH, Justy F, Leite YLR, Loss AC, Orlando L, Tilak M-K, Patterson BD, Douzery EJP (2016) Mitogenomic phylogeny, diversification, and biogeography of South American spiny rats. Mol Biol Evol 34:msw261.  https://doi.org/10.1093/molbev/msw261 CrossRefGoogle Scholar
  14. Feldhamer GA, Drickamer LC, Vessey SH, Merritt JF, Carey K (2014) Mammalogy: Adaptation, Diversity, Ecology, 4th Editio. Johns Hopkins University Press, BaltimoreGoogle Scholar
  15. Felsenstein J (1988) Phylogenies and quantitative characters. Annu Rev Ecol Syst 19:445–471.  https://doi.org/10.1146/annurev.es.19.110188.002305 CrossRefGoogle Scholar
  16. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15.  https://doi.org/10.1086/284325 CrossRefGoogle Scholar
  17. Giannini NP (2014) Quantitative developmental data in a phylogenetnic framework. J Exp Zool Part B Mol Dev Evol 322:558–566.  https://doi.org/10.1002/jez.b.22588 CrossRefGoogle Scholar
  18. Gomes Rodrigues H, Šumbera R, Hautier L (2016) Life in burrows channelled the morphological evolution of the skull in rodents: the case of African mole-rats (Bathyergidae, Rodentia). J Mammal Evol 23:175–189.  https://doi.org/10.1007/s10914-015-9305-x CrossRefGoogle Scholar
  19. Goswami A, Polly PD, Mock OB, Sánchez-Villagra MR (2012) Shape, variance and integration during craniogenesis: contrasting marsupial and placental mammals. J Evol Biol 25:862–872.  https://doi.org/10.1111/j.1420-9101.2012.02477.x CrossRefPubMedGoogle Scholar
  20. Goswami A, Randau M, Polly PD, Weisbecker V, Bennett CV, Hautier L, Sánchez-Villagra MR (2016) Do developmental constraints and high integration limit the evolution of the marsupial oral apparatus? Integr Comp Biol icw039.  https://doi.org/10.1093/icb/icw039
  21. Gould SJ (1977) Ontogeny and Phylogeny. Harvard University Press, CambridgeGoogle Scholar
  22. Isaeva VV (2015) Heterochronies, heterotopies, and cell resources of development in ontogenetic and evolutionary transformations. Paleontol J 49:1–8.  https://doi.org/10.1134/S0031030115140051 CrossRefGoogle Scholar
  23. Jolicoeur P (1963) The multivariate generalization of the allometry equation. Biometrics 19:497–499.  https://doi.org/10.2307/2527939 CrossRefGoogle Scholar
  24. Klingenberg CP (1998) Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol Rev Camb Phil Soc 73:79–123CrossRefGoogle Scholar
  25. Klingenberg CP (1996) Multivariate allometry. In: Marcus LF, Corti M, Loy A, Nalyor GJP, Slice DE (eds) Advances in Morphometrics. Plenum Press, New York, pp 23–49CrossRefGoogle Scholar
  26. Klingenberg CP (2008) Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst 39:115–132.  https://doi.org/10.1146/annurev.ecolsys.37.091305.110054 CrossRefGoogle Scholar
  27. Klingenberg CP, Spence JR (1993) Heterochrony and allometry: lessons from the water strider genus Limnoporus. Evolution 47:1834-1853.  https://doi.org/10.2307/2410225 CrossRefPubMedGoogle Scholar
  28. Lacey EA, Patton JL, Cameron GN (eds) (2000) Life Underground: the Biology of Subterranean Rodents. The University of Chicago Press, ChicagoGoogle Scholar
  29. Mallarino R, Abzhanov A (2012) Paths less traveled: Evo-Devo approaches to investigating animal morphological evolution. Annu Rev Cell Dev Biol 28:743–763.  https://doi.org/10.1146/annurev-cellbio-101011-155732 CrossRefPubMedGoogle Scholar
  30. Marcy AE, Hadly EA, Sherratt E, Garland K, Weisbecker V (2016) Getting a head in hard soils: convergent skull evolution and divergent allometric patterns explain shape variation in a highly diverse genus of pocket gophers (Thomomys). BMC Evol Biol 16:207.  https://doi.org/10.1186/s12862-016-0782-1 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Marroig G, Shirai LT, Porto A, Oliveira FB, Conto V (2009) The evolution of modularity in the mammalian skull II: evolutionary consequences. Evol Biol 36:136–148.  https://doi.org/10.1007/s11692-009-9051-1 CrossRefGoogle Scholar
  32. Mason MJ (2006) Middle ear structures in fossorial mammals: a comparison with non-fossorial species. J Zool 255:467–486.  https://doi.org/10.1017/S0952836901001558 CrossRefGoogle Scholar
  33. McCoy MW, Bolker BM, Osenberg CW, Miner BG, Vonesh JR (2006) Size correction: comparing morphological traits among populations and environments. Oecologia 148:547–554.  https://doi.org/10.1007/s00442-006-0403-6 CrossRefPubMedGoogle Scholar
  34. Mcintosh AF, Cox PG (2016) The impact of digging on craniodental morphology and integration. J Evol Biol 29:2383–2394.  https://doi.org/10.1111/jeb.12962 CrossRefPubMedGoogle Scholar
  35. McKinney ML (1988) Classifying heterochrony: allometry, size and time. In: McKinney ML (ed) Heterochrony in Evolution: A Multidisciplinary Approach. Plenum Press, New York, pp 17 – 34CrossRefGoogle Scholar
  36. Monteiro LR, Duarte LC, dos Reis SF (2003) Environmental correlates of geographical variation in skull and mandible shape of the punaré rat Thrichomys apereoides (Rodentia: Echimyidae). J Zool 261:47–57.  https://doi.org/10.1017/S0952836903003893 CrossRefGoogle Scholar
  37. Mora M, Olivares AI, Vassallo AI (2003) Size, shape and structural versatility of the skull of the subterranean rodent Ctenomys (Rodentia, Caviomorpha): functional and morphological analysis. Biol J Linn Soc 78:85–96.  https://doi.org/10.1046/j.1095-8312.2003.00133.x CrossRefGoogle Scholar
  38. Morgan CC, Verzi DH (2011) Carpal-metacarpal specializations for burrowing in South American octodontoid rodents. J Anat 219:167–175.  https://doi.org/10.1111/j.1469-7580.2011.01391.x CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mosimann JE (1970) Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions. J Am Stat Assoc 65:930.  https://doi.org/10.2307/2284599 CrossRefGoogle Scholar
  40. Nevo E (1979) Adaptive convergence and divergence of subterranean mammals. Annu Rev Ecol Syst 10:269–308.  https://doi.org/10.1146/annurev.es.10.110179.001413 CrossRefGoogle Scholar
  41. Nevo E (1995) Mammalian evolution underground. The ecological-genetic-phenetic interfaces. Acta Theriol Suppl 3:9–31CrossRefGoogle Scholar
  42. Nicola PA, Monteiro LR, Pessôa LM, von Zuben FJ, Rohlf FJ, dos Reis SF (2003) Congruence of hierarchical, localized variation in cranial shape and molecular phylogenetic structure in spiny rats, genus Trinomys (Rodentia: Echimyidae). Biol J Linn Soc 80:385–396.  https://doi.org/10.1046/j.1095-8312.2003.00245.x
  43. Patton JL, Leite RN (2015) Genus Proechimys J. A. Allen, 1899. In: Patton JL, Pardiñas UFJ, D’Elía G (eds) Mammals of South America, Volume 2 (Rodents). The University of Chicago Press, Chicago, pp 950–989CrossRefGoogle Scholar
  44. Perez SI, Diniz-Filho JAF, Rohlf FJ, dos Reis SF (2009) Ecological and evolutionary factors in the morphological diversification of South American spiny rats. Biol J Linn Soc 98:646–660.  https://doi.org/10.1111/j.1095-8312.2009.01307.x CrossRefGoogle Scholar
  45. Pessôa LM, Tavares WC, Neves ACA, Silva ALG (2015a) Genus Thrichomys E.- L. Trouessart, 1880. In: Patton JL, Pardiñas UFJ, D’Elía G (eds) Mammals of South America, Volume 2 (Rodents). The University of Chicago Press, Chicago, pp 989–999Google Scholar
  46. Pessôa LM, Tavares WC, Oliveira JA, Patton JL (2015b) Genus Trinomys Thomas, 1921. In: Patton JL, Pardiñas UFJ, D’Elía G (eds) Mammals of South America, Volume 2 (Rodents). The University of Chicago Press, Chicago, pp 999–1019Google Scholar
  47. R Core Team (2016) R: A Language and Environment for Statistical Computing.Google Scholar
  48. Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223.  https://doi.org/10.1111/j.2041-210X.2011.00169.x CrossRefGoogle Scholar
  49. Santos JWA, Lacey EA (2011) Burrow sharing in the desert-adapted torch-tail spiny rat, Trinomys yonenagae. J Mammal 92:3–11.  https://doi.org/10.1644/09-MAMM-S-389.1 CrossRefGoogle Scholar
  50. Schleich CE, Vassallo AI (2003) Bullar volume in subterranean and surface-dwelling caviomorph rodents. J Mammal 84:185–189.  https://doi.org/10.1644/1545-1542(2003)084<0185:BVISAS>2.0.CO;2 CrossRefGoogle Scholar
  51. Sidlauskas B (2008) Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62:3135–3156.  https://doi.org/10.1111/j.1558-5646.2008.00519.x CrossRefPubMedGoogle Scholar
  52. Tavares WC, Pessôa LM, Seuánez HN (2016a) Phylogenetic and size constraints on cranial ontogenetic allometry of spiny rats (Echimyidae, Rodentia). J Evol Biol 29:1752–1765.  https://doi.org/10.1111/jeb.12905 CrossRefPubMedGoogle Scholar
  53. Tavares WC, Pessôa LM, Seuánez HN (2016b) Stability and acceleration of phenotypic evolution in spiny rats (Trinomys, Echimyidae) across different environments. Zool J Linn Soc 178:149–162.  https://doi.org/10.1111/zoj.12406 CrossRefGoogle Scholar
  54. Upham NS, Patterson BD (2012) Diversification and biogeography of the Neotropical caviomorph lineage Octodontoidea (Rodentia: Hystricognathi). Mol Phylogenet Evol 63:417–429.  https://doi.org/10.1016/j.ympev.2012.01.020 CrossRefPubMedGoogle Scholar
  55. Van Valen L (1973) Festschrift. Science 180:488.  https://doi.org/10.1111/j.1467-8411.2010.01252.x Google Scholar
  56. Vassallo AI, Mora MS (2007) Interspecific scaling and ontogenetic growth patterns of the skull in living and fossil ctenomyid and octodontid rodents (Caviomorpha: Octodontoidea). In: Kelt DA, Lessa EP, Salazar-Bravo J, Patton JL (eds). The Quintessential Naturalist: Honoring the Life and Legacy of Oliver P. Pearson. University of California Press, Berkeley, pp 944–968Google Scholar
  57. Verzi DH, Álvarez A, Olivares AI, Morgan CC, Vassallo AI (2010) Ontogenetic trajectories of key morphofunctional cranial traits in South American subterranean ctenomyid rodents. J Mammal 91:1508–1516.  https://doi.org/10.1644/09-MAMM-A-411.1.Key CrossRefGoogle Scholar
  58. Verzi DH, Olivares AI, Morgan CC, Álvarez A (2016) Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the Family Abrocomidae. J Mammal Evol 23:93–115.  https://doi.org/10.1007/s10914-015-9301-1 CrossRefGoogle Scholar
  59. Voje KL, Hansen TF, Egset CK, Bolstad GH, Pélabon C (2014) Allometric constraints and the evolution of allometry. Evolution 68:866–885.  https://doi.org/10.1111/evo.12312 CrossRefPubMedGoogle Scholar
  60. Warton DI, Duursma RA, Falster DS, Taskinen S (2012) Smatr 3- an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259.  https://doi.org/10.1111/j.2041-210X.2011.00153.x CrossRefGoogle Scholar
  61. Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev Camb Phil Soc 81:259–291.  https://doi.org/10.1017/S1464793106007007 CrossRefGoogle Scholar
  62. Watanabe A, Slice DE (2014) The utility of cranial ontogeny for phylogenetic inference: a case study in crocodylians using geometric morphometrics. J Evol Biol 27:1078–1092.  https://doi.org/10.1111/jeb.12382 CrossRefPubMedGoogle Scholar
  63. Webster DB, Plassmann W (1992) Parallel evolution of low-frequency sensitivity in Old World and New World desert rodents. In: Webster DB, Fay RR, Popper AN (eds). The Evolutionary Biology of Hearing. Springer, New York, pp 633–636CrossRefGoogle Scholar
  64. Weston EM (2003) Evolution of ontogeny in the hippopotamus skull: using allometry to dissect developmental change. Biol J Linn Soc 80:625–638.  https://doi.org/10.1111/j.1095-8312.2003.00263.x CrossRefGoogle Scholar
  65. Wilson LAB (2013) Allometric disparity in rodent evolution. Ecol Evol 3:971–984.  https://doi.org/10.1002/ece3.521 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wilson LAB, Sánchez-Villagra MR (2010) Diversity trends and their ontogenetic basis: an exploration of allometric disparity in rodents. Proc R Soc B 277:1227–1234.  https://doi.org/10.1098/rspb.2009.1958 CrossRefPubMedGoogle Scholar
  67. Zelditch ML, Bookstein FL, Lundrigan BL (1992) Ontogeny of integrated skull growth in the Cotton Rat Sigmodon fulviventer. Evolution 46: 1164-1180.  https://doi.org/10.2307/2409763 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Genética, Departamento de Genética, CCSUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Departamento de Zoologia, CCSUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Programa de GenéticaInstituto Nacional de CâncerRio de JaneiroBrazil

Personalised recommendations