Journal of Mammalian Evolution

, Volume 23, Issue 3, pp 297–307 | Cite as

Molecular Phylogeography of Harvest Mice (Reithrodontomys megalotis) Based on Cytochrome b DNA Sequences

  • Elizabeth Nava-García
  • José Antonio Guerrero-Enríquez
  • Elizabeth Arellano
Original Paper


The species of harvest mouse Reithrodontomys megalotis belongs to one of the most diverse genera in North America with a wide latitudinal and altitudinal distribution. Previous studies suggest the existence of great morphological, chromosomal, and genetic variability; however, few of them have addressed the evolutionary patterns at the intraspecific level. We analyzed the evolutionary relationships and levels of genetic divergence in R. megalotis using DNA sequences of the mitochondrial cytochrome b gene. The results of the analysis with different phylogeographic methods show that R. megalotis represents a monophyletic group with respect to R. zacatecae, and populations included here split in three groups that were always consistent. Populations from the southern distribution form the first clade; from western North America form the second clade; and the third one comprises the populations of the Central Plains from the southern United States and the Mexican Plateau. The values of average genetic divergence within and among clades are low (< 3.4 %) compared to other species with similar distribution and times of divergence and origin. The results of this work are discussed in the context of the low genetic divergence found, given its wide and heterogeneous distribution together with its morphological variation. It is suggested that populations of R. megalotis have probably developed considerable phenotypic plasticity whose analysis and description should be approached from an ecological more than historical perspective.


Reithrodontomys megalotis Phylogeography Genetic divergence Cytochrome b Haplotype networks 



This study is part of the PhD Dissertation of ENG, supported by the Consejo Nacional de Ciencia y Tecnología scholarship number 163092. We thank Drs. James L. Patton of the Museum of Vertebrate Zoology, University of California; Duke S. Rogers of the Monte L. Bean Life Science Museum, Brigham Young University; Sergio Ticul Álvarez-Castañeda of the Centro de Investigaciones Biológicas del Noroeste; Celia López González of the Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango; Francisco X. González-Cózatl of the Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos for providing tissue samples and/or DNA sequences. We also thank Dr. Rachel M. Vallejo, Cyndi Colin L. Roman, Mariana González Tellez, Armando Pérez Barrios, Sergio Albino Miranda, and Scarleth Sotelo Reyes for their help doing field work; and Dr. Ana L. Almendra for her help and comments in some analyses. The research conducted with partial resources granted by the Universidad Autónoma del Estado de Morelos through Fondo de Consolidación para Universidades Públicas Estatales y Apoyo Solidario 2010. Finally, we appreciate the comments made by anonymous reviewers, which were useful to the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10914_2015_9318_MOESM1_ESM.doc (102 kb)
ESM 1 (DOC 102 kb)


  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Caski F (eds) Proceedings of the Second International Symposium on Information Theory. Akadémiai Kiadó, Budapest, pp 267–281Google Scholar
  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Contr 19:716–723CrossRefGoogle Scholar
  3. Albright LB (1999) Magnetostratigraphy and biochronology of the San Timoteo Badlands, southern California, with implications for local Pliocene-Pleistocene tectonic and depositional patterns. Geol Soc Am Bull 111:1265–1293CrossRefGoogle Scholar
  4. Alvarez-Castañeda ST, Rios E (2003) Noteworthy record of Western harvest mouse (Muridae: Reithrodontomys megalotis) on the Baja California Peninsula. Southwest Nat 48:471–472CrossRefGoogle Scholar
  5. Arbogast BS, Edwards SV, Wakeley J, Beerli P, Slowinski JB (2002) Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu Rev Ecol Evol Syst 33:707–740Google Scholar
  6. Arellano E, González-Cozátl F, Rogers DS (2005) Molecular systematics of Middle American harvest mice Reithrodontomys (Muridae), estimated from mitochondrial cytochrome b gene sequences. Mol Phylogenet Evol 37:529–540CrossRefPubMedGoogle Scholar
  7. Baird SF 1857 (1858) Mammals. In: Reports of Explorations and Surveys, to Ascertain the Most Practicable and Economical Route for a Railroad from the Mississippi River to the Pacific Ocean. Beverly Tucker Printer, Washington, D.C., 8(1):1–757 + 43 platesGoogle Scholar
  8. Bandelt HJ, Forster P, Sykes BC, Richards MB (1995) Mitochondrial portraits of human populations. Genetics 141:743–753PubMedPubMedCentralGoogle Scholar
  9. Bradley RD, Baker RJ (2001) A test of the genetic species concept: Cytochrome b sequences and mammals. J Mammal 82:960–973CrossRefGoogle Scholar
  10. Bell DM, Hamilton MJ, Edwards CW, Wiggins LE, Muniz Martinez R, Strauss RE, Bradley RD, Baker RJ (2001) Patterns of karyotypic megaevolution in Reithrodontomys: evidence from a cytochrome-b phylogenetic hypothesis. J Mammal 82:81–91CrossRefGoogle Scholar
  11. Cassens I, Waerebeck KV, Best PB, Crespo EA, Reyes J, Milinkovitch MC (2003) The phylogeography of dusky dolphins (Lagenorhynchus obscurus): a critical examination of network methods and rooting procedures. Mol Ecol 12:1781–1792CrossRefPubMedGoogle Scholar
  12. Crandall KA (1996) Multiple interspecies transmissions of human and simian T-cell leukemia/lymphoma virus type I sequences. Mol Biol Evol 13: 115–131CrossRefPubMedGoogle Scholar
  13. Crandall KA, Templeton AR (1996) Applications of intraspecific phylogenetics. In: Harvey PH, Leigh Brown AJ, Maynard Smith J, Nee S (eds) New Uses for New Phylogenies. Oxford University Press, New York, pp 81–99Google Scholar
  14. Dalquest WW (1975) Vertebrate fossils from the Blanco Local fauna of Texas. Occas Pap Mus Texas Tech Univ 30:1–52Google Scholar
  15. Dalquest WW (1978) Early Blancan mammals of the Beck Ranch local fauna of Texas. J Mammal 59:269–298CrossRefGoogle Scholar
  16. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  17. Demboski JR, Sullivan J (2003) Extensive mtDNA variation within the yellow-pine chipmunk, Tamias amoenus (Rodentia: Sciuridae), and phylogeographic inferences for northwest North America. Mol Phylogenet Evol 26:389–408CrossRefPubMedGoogle Scholar
  18. Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4(5):e88CrossRefPubMedPubMedCentralGoogle Scholar
  19. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973Google Scholar
  20. Edwards CW, Bradley RD (2002) Molecular systematics and the historical phylobiogeography of the Neotoma mexicana species group. J Mammal 83:20–30CrossRefGoogle Scholar
  21. Erlich HA (1989) PCR technology. In: Erlich HA (ed) Principles and Applications for DNA Amplification, Stockton Press, New York, pp 246–252Google Scholar
  22. Eshelman RE (1975) Geology and paleontology of the early Pleistocene (late Blancan) White Rock fauna from north-nentral Kansas. In: Studies on Cenozoic Paleontology and Stratigraphy, Claude W. Hibbard Memorial Vol., 4, Univ Mich Papers Paleontol 13:1–60Google Scholar
  23. Excoffier L, Lischer HE (2010) Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  24. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  25. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  26. Ford SD (1977) Range, distribution and habitat of the western harvest mouse, Reithrodontomys megalotis, in Indiana. Am Midland Nat 98:422–432CrossRefGoogle Scholar
  27. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  28. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  29. Hall ER (1981) The Mammals of North America, 2nd ed. John Wiley and Sons, Inc., New YorkGoogle Scholar
  30. Hardy DK, González-Cozatl F, Arellano E, Rogers D (2013) Molecular phylogeographic structure and phylogenetics of Sumichrast’s harvest mouse (Reithrodontomys sumichrasti: Family Cricetidae) based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 68:282–292CrossRefPubMedGoogle Scholar
  31. Harpending HC, Batzer MA, Gurven M, Jorde LB, Rogers AR, Sherry ST (1998) Genetic traces of ancient demography. Proc Natl Acad Sci USA 95:1961–1967CrossRefPubMedPubMedCentralGoogle Scholar
  32. Harris D, Rogers DS, Sullivan J (2000) Phylogeography of Peromyscus furvus (Rodentia: Muridae) based on cytochrome b sequence data. Mol Ecol 9:2129–2135CrossRefPubMedGoogle Scholar
  33. Hibbard CW, Taylor DW (1960) Two late Pleistocene faunas from southwestern Kansas. Contrib Mus Paleontol Univ Mich 16:1–223Google Scholar
  34. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192CrossRefGoogle Scholar
  35. Hood CG, Robbins LW, Baker RJ, Shellhammer HS (1984) Chromosomal studies and evolutionary relationships of an endangered species, Reithrodontomys raviventris. J Mammal 65:655–667CrossRefGoogle Scholar
  36. Hooper ET (1952) A systematic review of harvest mice (genus Reithrodontomys) of Latin America. Misc Publ Mus Zool Univ Mich 77:1–255Google Scholar
  37. Hornsby A, Matocq M (2012) Differential regional response of the bushy-tailed woodrat (Neotoma cinerea) to late Quaternary climate change. J Biogeog 39:289–305CrossRefGoogle Scholar
  38. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144.CrossRefPubMedGoogle Scholar
  39. Kerhoulas NJ, Arbogast BS (2010) Molecular systematic and Pleistocene biogeography of Mesoamerican flying squirrels. J Mammal 91:654–667CrossRefGoogle Scholar
  40. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  41. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  42. León-Paniagua L, Navarro-Sigüenza AG, Hernández-Baños B, Morales JC (2007) Diversification of the arboreal mice of the genus Habromys (Rodentia: Cricetidae: Neotominae) in the Mesoamerican highlands. Mol Phylogenet Evol 42:653–664CrossRefPubMedGoogle Scholar
  43. Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  44. Malaney JL (2013) Exploring signals of historical demography in boreal mammals through integration of statistical conservation phylogenetics, taxonomy, and comparative phylogeography. Dissertation: Doctor of Philosophy, Biology, The University of New Mexico, AlbuquerqueGoogle Scholar
  45. Malaney JL, Conroy CJ, Moffitt LA, Spoonhunter HD, Patton JL, Cook JA (2013) Phylogeography of the western jumping mouse (Zapus princeps) detects deep and persistent allopatry with expansion. J Mammal 94(5):1016–1029CrossRefGoogle Scholar
  46. McKnight ML (2005) Phylogeny of the Perognathus longimembris species group based on mitochondrial cytochrome-b: how many species? J Mammal 86:826–832Google Scholar
  47. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE). IEEE, pp 1–8Google Scholar
  48. Neiswenter SA, Riddle BR (2010) Diversification of the Perognathus flavus species group in emerging arid grasslands of western North America. J Mammal 91:348–362CrossRefGoogle Scholar
  49. Peralta-Garcia A, Samaniego-Herrera A, Valdez-Villavicencio JH (2007) Western harvest mouse, Reithrodontomys megalotis (Rodentia: Muridae), on Magdalena Island, Mexico. Southwest Nat 52:595–623CrossRefGoogle Scholar
  50. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian Approaches over likelihood ratio tests. Syst Biol 53:793–808CrossRefPubMedGoogle Scholar
  51. Rambaut A, Drummond AJ (2009) Tracer v1.5. Available from
  52. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Available from
  53. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  54. Rogers DS, Arellano E, González-Cózatl FX, Hardy DK, Hanson JD, Lewis-Rogers N (2009) Molecular phylogenetics of Oligoryzomys fulvescens based on cytochrome b gene sequences, with comments on the evolution of the genus Oligoryzomys. In: Cervantes FA, Hortelano MY, Vargas CJ (eds) 60 años de la Colección Nacional de Mamíferos del Instituto de Biología, UNAM. Aportaciones al Conocimiento y Conservación de los Mamíferos Mexicanos. Universidad Autónoma de México, México, D. F, pp 209–222‬‬‬‬‬‬‬Google Scholar
  55. Rogers DS, Funk CC, Miller JR, Engstrom MD (2007) Molecular phylogenetic relationships among crested-tailed mice (genus Habromys). J Mammal Evol 14:37–55CrossRefGoogle Scholar
  56. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3): 539–542Google Scholar
  57. Ruff S, Wilson D (1999) The Smithsonian Book of North American Mammals. Smithsonian Institution Press in association with the American Society of Mammalogist, Washington, D.C.Google Scholar
  58. Ruiz JC (2002) Filogeografía de una especie de roedor múrido endémico al Eje Neo volcánico Transversal (Reithrodontomys chrysopsis). Tesis de licenciatura. Universidad Nacional Autónoma de México. México.Google Scholar
  59. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  60. Sánchez O (1993) Análisis de algunas tendencias ecogeográficas del género Reithrodontomys (Rodentia: Muridae) en México. In: Medellín RA, Cevallos G (eds) Avances en el estudio de los mamíferos de México, Publicaciones Especiales, Vol. 1, Asociación Mexicana de Mastozoología, A. C. México, D. F, pp 25–44Google Scholar
  61. Schultz GE (1969) Geology and paleontology of a late Pleistocene basin in southwest Kansas. Geol Soc Am Spec Pap 105:1–85Google Scholar
  62. Smith MF, Patton JL (1993) The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the Akodontine tribe. Biol J Linn Soc 50:149–177CrossRefGoogle Scholar
  63. Sullivan J, Arellano E, Rogers DS (2000) Comparative phylogeography of Mesoamerican Highland rodents: concerted versus independent response to past climatic fluctuations. Am Nat 155:755–768CrossRefPubMedGoogle Scholar
  64. Sullivan J, Markert JA, Kilpatrick CW (1997) Phylogeography and molecular systematics of the Peromyscus aztecus species group (Rodentia: Muridae) inferred using parsimony and likelihood. Syst Biol 46:426–440CrossRefPubMedGoogle Scholar
  65. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods) Version 4.0b10. Sinauer Associates, Inc., Sunderland, Massachusetts.Google Scholar
  66. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595PubMedPubMedCentralGoogle Scholar
  67. Tomida Y (1987) Small mammal fossils and correlation of continental deposits, Safford and Duncan basins, Arizona, USA. National Science Museum, Tokyo. Science Museum Monographs 1–141Google Scholar
  68. Urbina SI (2011) Variación cromosómica de especies del género Reithrodontomys de Bosque Mesófilo de Montaña. Tesis de Maestría. Universidad Autónoma Metropolitana-Iztapalapa. México, D.FGoogle Scholar
  69. Vallejo RM, González-Cózatl FX (2012) Phylogenetic affinities and species limits within the genus Megadontomys (Rodentia:Cricetidae) based on mitochondrial sequence data. J Zool Syst Evol Res 50(1):67–75CrossRefGoogle Scholar
  70. Wagner HM, Riney BO, Deméré TA, Prothero DR (2001) Magnetic stratigraphy and land mammal biochronology of a non-marine facies of the Pliocene San Diego Formation, San Diego County, California. In: Prothero DR (ed) Magnetic Stratigraphy of the Pacific Coast Cenozoic: Pacific Section SEPM Spec Publ 91:359–368Google Scholar
  71. Whitaker JO, Mumford RE (1972) Ecological studies on Reithrodontomys megalotis in Indiana. J Mammal 53:850–860CrossRefGoogle Scholar
  72. Wright SD (1949) The genetical structure of populations. Annals of Eugenics 15:323–354CrossRefGoogle Scholar
  73. Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Mol Biol Evol 14:717–724CrossRefPubMedGoogle Scholar
  74. Yasuda SP, Vogel P, Tsuchiya K, Han SH, Lin LK, Suzuki H (2005) Phylogeographic patterning of mtDNA in the widely distributed harvest mouse (Micromys minutus) suggests dramatic cycles of range contraction and expansion during the mid- to late Pleistocene. Can J Zool 83:1411–1420CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Elizabeth Nava-García
    • 1
  • José Antonio Guerrero-Enríquez
    • 2
  • Elizabeth Arellano
    • 1
  1. 1.Departamento de Sistemática y Evolución, Centro de Investigación en Biodiversidad y ConservaciónUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  2. 2.Facultad de Ciencias BiológicasUniversidad Autónoma del Estado de MorelosCuernavacaMexico

Personalised recommendations