Skip to main content
Log in

The Levator Veli Palatini Muscle in Artiodactyls—A Comparative Ontogenetic Study

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

It is accepted in the literature that the levator veli palatini muscle of artiodactyls originates at the ectotympanic bone, a statement based on macroscopic dissection of adult specimens. The study of 34 histological serial sections of fetal heads of 23 species of artiodactyls revealed that this generalization must be modified: in the studied Camelidae, Suidae, Hippopotamidae, Giraffidae, and in some Bovidae (namely Tragelaphus and Antidorcas) the primary attachment of this functionally important muscle is at the tendinous intersection with the tensor veli palatini. Primary ontogenetic attachments are considered as relevant for defining homologies. By outgroup comparison (Felis and Diceros), this structural connection (character state 1) is also found in the Scrotifera—and hence may be considered as plesiomorphic for the Artiodactyla and its subunits. Only in the Tragulidae, Cervidae, Moschidae, and some Bovidae is a secondary attachment at the ectotympanic observed, which is interpreted as apomorphic for these taxa; possibly this character state 2 developed homoplastically several times. Bovidae show a mixed distribution of this character: Tragelaphus, Aepyceros, and Antidorcas show only a connection of the levator with the tensor veli; in Neotragus, Raphicerus, and Sylvicapra there exists an additional insertion at the ectotympanic; only Bos, Cephalophus, Damaliscus, and Ovis have a primary origin at the ectotympanic. It can be demonstrated in late fetal Sus that a secondary insertion of the levator veli at the ectotympanic is established during ontogeny; in a late fetal Ovis a secondary contact with the tensor veli is realized. The interpretation of this character distribution depends not only on an intrinsic polarity (‘Lesrichtung’), but also on the assumed character state of the groundplan of the common ancestor of the Bovidae. The anatomical observations are documented by photographs of relevant histological sections. The character states are mapped on a simplified and synoptic cladogram of extant artiodactyls; their pattern of evolutionary transformation as well as their relevance for the phylogenetic systematics of this mammalian order are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Plate 1
Plate 2
Plate 3
Plate 4
Plate 5

Similar content being viewed by others

Abbreviations

ali:

Alisphenoid

bl:

Blastema

bsph:

Basisphenoid

cM:

Cartilage of Meckel

con:

Mandibular condyle

cphs:

Constrictor pharyngis superior

cty:

Tympanic cavity

den:

Dentary

ecty:

Ectotympanic

fat:

Fat tissue

hpt:

Hamulus pterygoideus

mlv:

Levator veli muscle

mpm:

Medial pterygoid muscle

mtv:

Tensor veli muscle

muv:

Uvular muscle

pal:

Pterygoid process of palatine

pha:

Nasopharynx

ppt:

Pterygoid process of alisphenoid

rph:

Recessus pharyngeus

rphs:

Retropharyngeal space

top:

Tonsilla palatina

tua:

Auditory tube

vel:

Velum palatinum (soft palate)

References

  • Asher RJ, Bennett N, Lehmann T (2009) The new framework for understanding placental mammal evolution. BioEssays 31: 853–864

    Article  CAS  PubMed  Google Scholar 

  • Barge JAJ (1937) Mundhöhlendach und Gaumen. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere vol. 6: 29–48. Urban and Schwarzenberg, Berlin

    Google Scholar 

  • Barghusen HR (1986): On the evolutionary origin of the therian tensor veli palatini and tensor tympani muscles. In: Hotton N, MacLean PD, Roth JJ, Roth EC (eds) The Ecology and Biology of Mammal-like Reptiles. Smithsonian Institution Press, Washington DC, pp 253–262

    Google Scholar 

  • Bärmann EV, Sánchez-Villagra MR (2012) A phylogenetic study of late growth events in a mammalian evolutionary radiation—the cranial sutures of terrestrial artiodactyl mammals. J Mammal Evol 19: 43–56

    Article  Google Scholar 

  • Braus H, Elze C (1956) Anatomie des Menschen. volume II, Eingeweide. 3rd ed. Springer Verlag, Berlin

    Google Scholar 

  • Braus H, Elze C. (1960) Anatomie des Menschen. volume III, Nervensystem. 2nd ed., Springer Verlag, Berlin

    Google Scholar 

  • Crompton AW, German RZ, Thexton AJ (1997) Mechanisms of swallowing and airway protection in infant mammals (Sus domestica and Macaca fascicularis). J Zool Lond 241: 89–102

    Article  Google Scholar 

  • Edgeworth FH (1935) The Cranial Muscles of Vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • Eschweiler R (1899) Zur vergleichenden Anatomie der Muskeln und der Topographie des Mittelohrs verschiedener Säugethiere. Archiv mikrosk Anat Entw gesch 53: 558–622

    Article  Google Scholar 

  • Fernandez MH, Vrba ES (2005) A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev 80: 269–302

    Article  Google Scholar 

  • Fourie S (1974) The cranial morphology of Thrinaxodon liorhinus Seeley. Ann S Afr Mus 65: 337–400

    Google Scholar 

  • Gegenbaur C (1874) Grundriß der vergleichenden Anatomie. Engelmann, Leipzig

    Book  Google Scholar 

  • Gentry AW (1970) The Bovidae (Mammalia) of the Fort Ternan fossil fauna. In: Leakey LSB, Savage RJG (eds) Fossil Vertebrates of Africa, vol. 2. 243–323. Academic Press, London, pp 243–323

  • Gentry AW (1990) Evolution and dispersal of African Bovidae. In: Bubenik GA, Bubnik BA (eds) Horns, Pronghorns, and Antlers. Springer Verlag, New York, pp 195–227

    Chapter  Google Scholar 

  • Gentry AW, Hooker JJ (1988) The phylogeny of the Artiodactyla. In: Benton MJ (ed) The Phylogeny and Classification of the Tetrapods, vol. 2 (Mammals). Clarendon Press, London, pp 235–282

    Google Scholar 

  • Hall BK, ed (1994) Homology. The Hierarchical Basis of Comparative Biology. Academic Press, London

    Google Scholar 

  • Hall BK (2005) Bones and Cartilage: Developmental and Evolutionary Skeletal Biology. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Hassanin A, Delsuc F, Ropiquet A, Hammer C, VanVuren B, Matthee C, Ruiz-Garcia M, Catzeflis F, Areskoug V, Nguyen TT, Couloux A (2012) Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. Comptes Rendus Biol 335, 32–50

    Article  PubMed  Google Scholar 

  • Hassanin A, Douzery EJP (2003) Molecular and morphological phylogenies of Ruminantia and the alternative position of the Moschidae. Syst Biol 52: 206–228

    Article  PubMed  Google Scholar 

  • Hennig W (1966) Phylognetic Systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Hennig W (1982) Phylogenetische Systematik. Pareys Studientexte 34, Parey Verlag, Hamburg

  • Himmelreich HA (1964) Der M. tensor veli palatini der Säugetiere unter Berücksichtigung seines Aufbaus, seiner Funktion und seiner Entstehungsgeschichte. Anat Anz 115: 1–26

    CAS  PubMed  Google Scholar 

  • Huene Fv (1956) Paläontologie und Phylogenie der Niederen Tetrapoden. Fischer Verlag, Jena

    Google Scholar 

  • Janis CM (1990) Correlation of reproductive and digestive strategies in the evolution of cranial appendages. In: Bubenik GA, Bubnik AB (eds) Horns, Pronghorns, and Antlers. Springer Verlag, New York, pp 114–133

    Chapter  Google Scholar 

  • Janis CM, Scott KM (1987) The interrelationships of higher ruminant families, with special emphasis of the members of the Cervoidea. Am Mus Novitates 2893: 1–85

    Google Scholar 

  • Janis CM, Scott KM (1988) The phylogeny of the Ruminantia (Artiodactyla, Mammalia). In: Benton MJ (ed) The Phylogeny and Classification of the Tetrapods, vol. 2 (Mammals). Clarendon Press, London, pp 235–282

    Google Scholar 

  • Kemp TS (1982) Mammal-like Reptiles and the Origin of Mammals. Academic Press, London

    Google Scholar 

  • Kemp TS (2005) The Origin and Evolution of Mammals. Oxford University Press, Oxford

    Google Scholar 

  • Langer P (1974) Stomach evolution in the Artiodactyla. Mammalia 38: 295–314

    Google Scholar 

  • Langer P (2001) Evidence from the digestive tract on the phylogenetic relationships in ungulates and whales. J Zool Syst Evol Res 39: 77–90

    Article  Google Scholar 

  • Lubosch W (1938) Muskeln des Kopfes: Viscerale Muskulatur. D. Säugetiere. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere, vol. 5. Urban & Schwarzenberg, Berlin, pp 1066–1106

    Google Scholar 

  • Luckett WP, Hong N (1998) Phylogenetic relationships between orders Artiodactyla and Cetacea: a combined assessment of morphological and molecular evidence. J Mammal Evol 5: 127182

    Article  Google Scholar 

  • Maier W (1999) On the evolutionary biology of early mammals—with methodological remarks on the interaction between ontogenetic adaptation and phylogenetic transformation. Zool Anz 238: 55–74

    Google Scholar 

  • Maier W (2008) Epitensoric position of the chorda tympani in Anthropoidea: a new synapomorphic character, with remarks on the fissura Glaseri. In: Sargis EJ, Dagosto M (eds) Mammalian Evolutionary Morphology. A Tribute to Frederick S. Szalay. Springer, Dordrecht, pp 347–360

    Chapter  Google Scholar 

  • Maier W, Heever J van den, Durand F (1996) New therapsid specimens and the origin of the secondary hard and soft palate of mammals. J Zool Syst Evol Res 34: 9–19

    Article  Google Scholar 

  • Marcot JD (2007) Molecular phylogeny of terrestrial artiodactyls. In: Prothero DR, Foss SE (eds) The Evolution of Artiodactyls. The Johns Hopkins University Press, Baltimore, pp 4–18

    Google Scholar 

  • Matthee CA, Burzlaff JD, Taylor JF, Davis SK (2001) Mining the mammalian genome for artiodactyl systematics. Syst Biol 50: 367–390

    Article  CAS  PubMed  Google Scholar 

  • Mendrez CH (1975) Principales variations du palais chez les thérocephales sud-africains (Pristerognathus et Scalooposauria) au cours due Permien supérieur et du Trias inférieur. Colloq intern CNRS 218: 379–407

    Google Scholar 

  • Meredith RW, Janecka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simao TLL, Stadler T, Rabosky DL, Honeycuttt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ (2011) Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammalian diversification. Science 334: 521–524

    Article  CAS  PubMed  Google Scholar 

  • Mickoleit G (2004) Phylogenetische Systematik der Wirbeltiere. Verlag Dr. Friedrich Pfeil München

    Google Scholar 

  • Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammalian radiation using Bayesian phylogenetics. Science 294: 2348–2351

    Article  CAS  PubMed  Google Scholar 

  • Nishihara H, Hasegawa M, Okada N (2006) Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. PNAS 103: 9929–9934

    Article  CAS  PubMed  Google Scholar 

  • Pauwels F (1960) Eine neue Theorie über den Einfluß mechanischer Reize auf die Differenzierung der Stützgewebe. Z Anat Entwickl gesch 121: 478–515

    Article  CAS  Google Scholar 

  • Price SA, Bininda-Emonds ORP, Gittleman JL. (2005) A complete phylogeny of the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla). Biol Rev 80, 445–473

    Article  PubMed  Google Scholar 

  • Ruf I, Frahnert S, Maier W (2009) The chorda tympani and its significance for rodent phylogeny. Mammal Biol 74, 100–113

    Google Scholar 

  • Saban R (1968) Musculature de la tête. In: Grassé P-P (ed) Traité de Zoologie, vol 16, fasc. 2, (Mammifères, Musculature). Masson, Paris, pp 229–472

    Google Scholar 

  • Springer MS, Murphy WJ, Eizirik E, O’Brien SJ (2003) Placental mammal diversification and the Cretaceous–Tertiary boundary. PNAS 100: 1056–1061

    Article  CAS  PubMed  Google Scholar 

  • Starck D (1967) Le crâne des Mammifères. In: Grassé P-P (ed) Traité de Zoologie, vol. 16, fasc.1. Masson, Paris, pp 405–549

    Google Scholar 

  • Starck D (1979) Vergleichende Anatomie der Wirbeltiere. Vol. 2: Das Skeletsystem. Springer, Stuttgart

    Book  Google Scholar 

  • Starck D (1995) Lehrbuch der Speziellen Zoologie.vol. II, Teil 5/1 und 5/2, Säugetiere. Fischer, Jena

  • Theodor JM, Rose KD, Erfurt J (2005) Artiodactyla. In: Rose KD, Archibald JD (eds) The Rise of Placental Mammals. Johns Hopkins University Press, Baltimore, pp 215–233

    Google Scholar 

  • van Kampen PN (1905) Die Tympanalgegend des Säugetierschädels. Morph Jahrb 34: 321–722

    Google Scholar 

  • von Kostanecky E (1891) Zur Morphologie der Tubengaumenmuskulatur. Arch Anat Entw gesch 1891: 145–181

    Google Scholar 

  • Warwick R, Williams PL (1973) Gray’s Anatomy. 35th ed. Longmans, London

    Google Scholar 

  • Weber M (1927/28) Die Säugetiere. Einführung in die Anatomie und Systematik der recenten und fossilen Mammalia. 2nd ed. Volumes 1 and 2. Fischer, Jena

  • Werdelin L, Sanders WJ, eds (2010) Cenozoic Mammals of Africa. University of California Press, Berkeley

    Google Scholar 

  • Wood Jones F (1940) The nature of the soft palate. J Anat 74:147–170

    Google Scholar 

Download references

Acknowledgements

The heads of 23 species of artiodactyl fetuses have been accumulated over the last 25 years or so; they have all been prepared in the histology labs of either the Dr. Senckenbergische Anatomie, Frankfurt/Main, or at the Department of Systematic Zoology of the University of Tübingen, where they are presently housed. I thank the technical assistants, who prepared the serial sections with great skill and patience: Monika Meinert, Thi Thi Fussnegger, Christina Nitzsche. A number of institutions have loaned specimens for histological processing: the American Museum of Natural History, New York; the Naturkundemuseum Berlin; the Museum of Zoology, Hamburg; and Department of Zoology, University of Stellenbosch. Some specimens were personal gifts by the late Prof. Dietrich Starck, to whose memory this study is dedicated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Maier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, W. The Levator Veli Palatini Muscle in Artiodactyls—A Comparative Ontogenetic Study. J Mammal Evol 20, 199–212 (2013). https://doi.org/10.1007/s10914-012-9210-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-012-9210-5

Keywords

Navigation