Journal of Mammalian Evolution

, Volume 20, Issue 3, pp 159–189 | Cite as

Postcranial Skeleton of the Cretaceous Mammal Akidolestes cifellii and Its Locomotor Adaptations

  • Meng ChenEmail author
  • Zhe-Xi Luo
Original Paper


Spalacotheroid “symmetrodontans” are a group of extinct Mesozoic mammals. They are basal taxa in the trechnotherian clade that includes modern marsupials and placentals. Therefore, fossils of spalacotheroids can provide information on the ancestral condition from which marsupials and placentals likely have evolved. Here, we describe the postcranial skeleton of Akidolestes cifellii, a spalacotheroid species from the Lower Cretaceous Yixian Formation of northeastern China. Our comparison of the skeletal features of Akidolestes and the closely related Zhangheotherium and Maotherium indicates some major morphological and functional differences in the postcranium among these spalacotheroid mammals. Akidolestes shows characters for terrestrial habitat preference. Overall it appears to be a generalized terrestrial mammal. Akidolestes differs from Zhangheotherium and Maotherium in some characteristics of the scapula, the pelvis, and the hind limb, some of which can be directly correlated with different locomotor capabilities, and possibly also habitat preferences. This suggests that a greater ecomorphological differentiation occurred in these stem therian mammals than previously thought and that ecological differentiation is a major pattern in early therian mammal evolution.


Akidolestes cifellii Spalacotheroid Postcranial skeleton Terrestrial Locomotor function Habitat preference 



We thank Prof. Xiangning Yang and Dr. Yukun Shi for facilitating research in Nanjing University. We especially want to thank Prof. Peiji Chen and Prof. Gang Li in Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, for helping us to access this fantastic fossil. Without great help of Profs. Chen and Li, this research would never been possible. We want to thank Drs. Vera Weisbecker and E. Christopher Kirk for discussion, and Gregory P. Wilson, Lauren Berg, Mary Dawson, John Wible, and two anonymous referees for their help to improve many aspects of this manuscript. We thank Mark A. Klingler for his skeletal and posture reconstruction of Akidolestes.


  1. Argot C (2001) Functional-adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 247:51–79PubMedCrossRefGoogle Scholar
  2. Argot C (2002) Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 253:76–108PubMedCrossRefGoogle Scholar
  3. Argot C (2003) Functional-adaptive anatomy of the axial skeleton of some extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 255:279–300PubMedCrossRefGoogle Scholar
  4. Averianov AO (2002) Early Cretaceous “symmetrodont” mammal Gobiotheriodon from Mongolia and the classification of “Symmetrodonta.” Acta Palaeontol Pol 47: 705–716Google Scholar
  5. Averianov AO, Lopatin AV (2008) “Protocone” in a pretribosphenic and upper dentition of tinodontid “symmetrodontans.” J Vertebr Paleontol 28:548–552CrossRefGoogle Scholar
  6. Beard KC (1993) Origin and evolution of gliding in early Cenozoic Dermoptera (Mammalia, Primatomorpha). In: MacPhee RDE (ed) Primates and Their Relatives in Phylogenetic Perspective. Plenum Press, New York, pp 63–90CrossRefGoogle Scholar
  7. Bloch JI, Boyer DM (2002) Grasping primate origins. Science 298:1606–1610PubMedCrossRefGoogle Scholar
  8. Cartmill M (1985) Climbing. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional Vertebrate Morphology. Harvard University of Press, Cambridge, pp 73–88Google Scholar
  9. Cassiliano ML, Clemens WA (1979) Symmetrodonta. In: Lillegraven JA, Kielan-Jaworowska Z, Clemens WA (eds) Mesozoic Mammals: The First Two-thirds of Mammalian History. University California Press, Berkeley, pp 150–161Google Scholar
  10. Cave AJE (1970) Observation on the monotreme interclavicle. J Zool Lond 160:297–312CrossRefGoogle Scholar
  11. Chen M, Luo Z-X (2008) Morphology of dentition and postcranial skeleton of Akidolestes. Acta Geol Sin 82:155–164 (in Chinese with English abstract)Google Scholar
  12. Chester SGB, Sargis EJ, Szalay FS, Archibald JD, Averianov, AO (2010) Mammalian distal humeri from the Late Cretaceous of Uzbekistan. Acta Palaeontol Pol 55: 199–211CrossRefGoogle Scholar
  13. Cifelli RL, Madsen SK (1986) An Upper Cretaceous symmetrodont (Mammalia) from southern Utah. J Vertebr Paleontol 6:258–263CrossRefGoogle Scholar
  14. Cifelli RL, Madsen SK (1999) Spalacotheriid symmetrodonts (Mammalia) from the medial Cretaceous (upper Albian or lower Cenomanian) Mussentuchit local fauna, Cedar Mountain Formation, Utah, USA. Geodiversitas 21:167–214Google Scholar
  15. Clemens WA (1963) Late Jurassic mammalian fossils in the Sedgwick Museum, Cambridge. Palaeontology 6:373–377Google Scholar
  16. Crompton AW (1971) The origin of the tribosphenic molar. In: Kermack DM, Kermack KA (eds) Early Mammals. Zool J Linn Soc 50 (supp 1), pp 65–87Google Scholar
  17. Crompton AW, Jenkins FA Jr (1967) Ammerican Jurassic symmetrodonts and Rhaetic “pantotheres.” Science 155:1006–1009PubMedCrossRefGoogle Scholar
  18. Ensom P, Sigogneau-Russell D (2000) New symmetrodonts (Mammalia, Theria) from the Purbeck Limestone Group, Lower Cretaceous, southern England. Cretaceous Res 21:767–779CrossRefGoogle Scholar
  19. Evans HE (1993) Miller’s Anatomy of the Dog, 3rd edn. W.B. Saunders Company, PhiladelphiaGoogle Scholar
  20. Filler AG (1986) Axial character seriation in mammals: an historical and morphological exploration of the origin, development, use and current collapse of the homology paradigm. Dissertation, Harvard UniversityGoogle Scholar
  21. Fox RC (1976) Additions to the mammalian local fauna from the upper Milk River Formation (Upper Cretaceous), Alberta. Can J Earth Sci 13:1105–1118CrossRefGoogle Scholar
  22. Gambaryan PP, Aristov, AA, Dixon JM, and Zubtsova GY (2002) Peculiarities of the hind limb musculature in monotremes: an anatomical description and functional approach. Russ J Theriol 1:1–36Google Scholar
  23. Gambaryan PP, Kielan-Jaworowska Z (1997) Sprawling versus parasagittal stance of multituberculate mammals. Acta Palaeontol Pol 42:13–44Google Scholar
  24. Gao C-L, Wilson GP, Luo Z-X, Maga AM, Meng Q-J, Wang X-R (2009) A new mammal skull from the Lower Cretaceous of China with implications for the evolution of obtuse-angled molars and ‘amphilestid’ entriconodonts. Proc R Soc B 277:237–246PubMedCrossRefGoogle Scholar
  25. Gill P (2004) A new symmetrodont from the Early Cretaceous of England. J Vertebr Paleontol 24:748–752CrossRefGoogle Scholar
  26. Grant T (1995) The Platypus–A Unique Mammal. University of New South Wales Press, SydneyGoogle Scholar
  27. Horovitz I (2000) The tarsus of Ukhaatherium nessovi (Eutheria, Mammalia) from the Late Cretaceous of Mongolia: an appraisal of the evolution of the ankle in basal therians. J Vertebr Paleontol 20:547–560CrossRefGoogle Scholar
  28. Hu Y-M (2006) Postcranial morphology of Repenomamus (Eutriconodonta, Mammalia): implications for the higher-level phylogeny of mammals. Dissertation, The City University of New YorkGoogle Scholar
  29. Hu Y-M, Wang YQ (2002) Sinobataar gen. nov.: first multituberculate from Jehol Biota of Liaoning, northern China. Chin Sci Bull 47:933–938CrossRefGoogle Scholar
  30. Hu Y-M, Meng J, Wang Y-Q, Li C-K (2005b) Large Mesozoic mammals fed on young dinosaurs. Nature 433:149–152PubMedCrossRefGoogle Scholar
  31. Hu Y-M, Wang Y-Q, Luo Z-X, Li C-K (1997) A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390:137–142PubMedCrossRefGoogle Scholar
  32. Hu Y-M, Wang Y-Q, Luo Z-X, Li C-K (1998) Morphology of dentition and forelimb of Zhangheotherium. Vertebr PalAsia 36:102–125 (in Chinese with English translation)Google Scholar
  33. Hu Y-M, Wang Y-Q, Fox RC, Li C-K (2005a) A new spalacotheriid symmetrodont from the Early Cretaceous of northeastern China. Am Mus Novitates 3475:1–20CrossRefGoogle Scholar
  34. Hurum JH, Luo Z-X, Kielan-Jaworowska Z (2006) Were mammals originally venomous? Acta Palaeontol Pol 51:1–11Google Scholar
  35. Jenkins FA Jr (1971a). The postcranial skeleton of African cynodonts. Peabody Mus Nat Hist Bull 36:1–216Google Scholar
  36. Jenkins FA Jr (1971b) Limb posture and locomotion in the Virginia opossum (Didelphis marsupialis) and in other non-cursorial mammals. J Zool Lond 165:303–315CrossRefGoogle Scholar
  37. Jenkins FA Jr (1973) The functional anatomy and evolution of the mammalian humero-ulnar joint. Am J Anat 137: 281–296.PubMedCrossRefGoogle Scholar
  38. Jenkins FA Jr (1974) Tree shrew locomotion and the origins of primate arborealism. In: Jenkins FA Jr (ed) Primate Locomotion. Academic Press, New York, pp 85–115Google Scholar
  39. Jenkins FA Jr, Parrington FR (1976) The postcranial skeleton of the Triassic mammals Eozostrodon, Megazostrodon and Erythrotherium. Phil Trans R Soc Lond Ser B Biol Sci 273:387–431CrossRefGoogle Scholar
  40. Jenkins, FA Jr, Weijs WA (1979) The functional anatomy of the shoulder in the Virginia opossum (Didelphis virginiana). J Zool Lond 188:379–410CrossRefGoogle Scholar
  41. Ji Q (2002) Discovery of a Mesozoic fossil mammal with hair and soft tissue in western Liaoning, China. Geol Bull China 21:29–34 (in Chinese with English abstract)Google Scholar
  42. Ji Q, Luo Z-X, Ji S-A (1999) A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature 398:326–330PubMedCrossRefGoogle Scholar
  43. Ji Q, Luo Z-X, Yuan C-X, Tabrum AR (2006) A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 331:1123–1127CrossRefGoogle Scholar
  44. Ji Q, Luo Z-X, Yuan C-X, Wible JR, Zhang J-P, Georgi JA (2002) The earliest known eutherian mammal. Nature 416:816–822PubMedCrossRefGoogle Scholar
  45. Ji Q, Luo Z-X, Zhang Z-L, Yuan C-X, Xu L (2009) Evolutionary development of the middle ear in Mesozoic therian mammals. Science 326:278–231PubMedCrossRefGoogle Scholar
  46. Kelt DA, Meyer MD (2009) Body size frequency distributions in African mammals are bimodal at all spatial scales. Global Ecol Biogeogr 18: 19–29CrossRefGoogle Scholar
  47. Kermack DM, Kermack KA, Mussett F (1968) The Welsh pantothere Kuehneotherium praecursoris. J Linn Society (Zool) 47:407–423CrossRefGoogle Scholar
  48. Kielan-Jaworowaka Z (1978) Evolution of therian mammals in the Late Cretaceous of Asia. Part III. Postcranial skeleton in Zalambdalestidae. Acta Palaeontol Pol 38:5–41Google Scholar
  49. Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the Age of Dinosaurs. Columbia University Press, New YorkGoogle Scholar
  50. Kielan-Jaworowska Z, Gambaryan PP (1994) Postcranial anatomy and habits of Asian multituberculate mammals. Fossils and Strata 36:1–92Google Scholar
  51. Kielan-Jaworowska Z, Hurum JH (2006) Limb posture in early mammals: sprawling or parasagittal. Acta Palaeontol Pol 51:393–406Google Scholar
  52. Kielan-Jaworowska Z, Qi T (1990) Fossorial adaptations of a taeniolabidoid multituberculate mammal from the Eocene of China. Vertebr PalAsiatica 28:81–94Google Scholar
  53. Kingdon J (1997) The Kingdon Field Guide to African Mammals. Academic Press, San DiegoGoogle Scholar
  54. Kirk EC, Lemelin P, Hamrick MW, Boyer DM, Bloch JI (2008) Intrinsic hand proportions of euarchontans and other mammals: implications for the locomotor behavior of plesiadapiforms. J Hum Evol 55:278–299PubMedCrossRefGoogle Scholar
  55. Klima M (1973) Die Frühentwicklung des Schültergürtels und des Brustbeins bei den Monotremen (Mammalia: Prototheria). Adv Anat Embryol Cell Biol 47:1–80Google Scholar
  56. Klima M (1987) Early development of the shoulder girdle and sternum in marsupials (Mammalia: Metatheria). Adv Anat Embryol Cell Biol 109:1–91PubMedCrossRefGoogle Scholar
  57. Krause DW, Jenkins FA Jr (1983) The postcranial skeleton of North American multituberculates. Bull Mus Comp Zool 150:199–246Google Scholar
  58. Krebs B (1991) Das skelett von Henkelotherium guimarotae gen. et sp. nov. (Eupantotheria, Mammalia) aus dem Oberen Jura von Protugal. Berlin Geowissenschaftl Abhandl A 133:1–110Google Scholar
  59. Kühne WG (1956) The Liassic Therapsid Oligokyphus. British Museum (Natural History), LondonGoogle Scholar
  60. Lemelin P (1999) Morphological correlates of substrate use in didelphid marsupials: implications for primate origins. J Zool Lond 247:165–175CrossRefGoogle Scholar
  61. Lessertisseur J, Saban R (1967a) Squelette axial. In: Grassé P-P (ed) Traité de Zoologie. Tome XVI (Fascicule I). Mammifères: Téguments et Squelette. Masson, Paris, pp 587–675Google Scholar
  62. Lessertisseur J, Saban R (1967b) Squelette appendiculaire. In: Grassé P-P (ed) Traité de Zoologie. Tome XVI (Fascicule I). Mammifères: Téguments et Squelette. Masson, Paris, pp 709–1078Google Scholar
  63. Li G, Luo Z-X (2006) A Cretaceous symmetrodont therian with some monotreme-like postcranial features. Nature 439:195–199PubMedCrossRefGoogle Scholar
  64. Lopatin AV, Maschenko EN, Averianov AO, Rezvyi AS, Skutschas PP, Leshchinskiy SV (2005) Early Cretaceous mammals from western Siberia: 1. Tinodontidae. Paleontol J 39:523–534Google Scholar
  65. Luo Z-X (2007a) Transformation and diversification in the early mammalian evolution. Nature 450:1011–1019PubMedCrossRefGoogle Scholar
  66. Luo Z-X (2007b) Successive diversifications in early mammalian evolution. In: Anderson JS, Sues H-D (eds) Major Transitions in Vertebrate Evolution. Indiana University Press, Bloomington and Indianapolis, pp 337–391Google Scholar
  67. Luo Z-X, Chen P-J, Li G, Chen M (2007a) A new eutriconodont mammal and evolutionary development in early mammals. Nature 446:288–293PubMedCrossRefGoogle Scholar
  68. Luo Z-X, Cifelli RL, Kielan-Jaworowska Z (2001) Dual origin of tribosphenic mammals. Nature 409:53–57PubMedCrossRefGoogle Scholar
  69. Luo Z-X, Ji Q (2005) New study on dental and skeletal features of the Cretaceous mammal Zhangheotherium. J Mammal Evol 12:337–357CrossRefGoogle Scholar
  70. Luo Z-X, Ji Q, Wible JR, Yuan C-X (2003) An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302:1934–1940PubMedCrossRefGoogle Scholar
  71. Luo Z-X, Ji Q, Yuan CX (2007b) Convergent dental evolution in pseudotribosphenic and tribosphenic mammals. Nature 450:93–97PubMedCrossRefGoogle Scholar
  72. Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47:1–78Google Scholar
  73. Luo Z-X, Wible JR (2005) A Late Jurassic digging mammal and early mammalian diversification. Science 308:103–107PubMedCrossRefGoogle Scholar
  74. Luo ZX, Yuan, CX, Meng QJ, Ji Q (2011) A Jurassic eutherian mammal and the divergence of marsupials and placentals. Nature 476:442–445PubMedCrossRefGoogle Scholar
  75. MacLeod N, Rose KD (1993) Inferring locomotor behavior in Paleogene mammals via eigenshape analysis. Am J Sci 293(A):300–355Google Scholar
  76. Martin T (1999) Dryolestidae (Dryolestoidea, Mammalia) aus dem Oberen Jura von Portugal. Abhandl Senckenberg Naturforsch Gesellsch 550:1–119Google Scholar
  77. Martin T (2002) New stem-line representatives of Zatheria (Mammalia) from the Late Jurassic of Portugal. J Vertebr Paleontol 22:332–348CrossRefGoogle Scholar
  78. Martin T (2005) Postcranial anatomy of Haldanodon exspectatus (Mammalia, Docodonta) from the Late Jurassic (Kimmeridgian) of Portugal and its bearing for mammalian evolution. Zool J Linn Soc 145:219–248CrossRefGoogle Scholar
  79. McKenna MC (1975) Toward a phylogenetic classification of the Mammalia. In: Luckett WP, Szalay FS (eds) Phylogeny of the Primates. Plenum Publishing Corporation, New York, pp 21–46CrossRefGoogle Scholar
  80. McKenna MC, Bell SK (1997) Classification of Mammals Above the Species Level. Columbia University Press, New YorkGoogle Scholar
  81. Meng J, Hu Y-M, Wang Y-Q, Wang X-L, Li C-K (2006) A Mesozoic gliding mammal from northeastern China. Nature 444:889–893PubMedCrossRefGoogle Scholar
  82. Nakagawa M, Miguchi H, Sato S, Sakai S, Nakashizuka T (2007) Population dynamics of arboreal and terrestrial small mammals in a tropical rainforest, Sarawak, Malaysia. Raffles Bullet Zool 55: 389–395Google Scholar
  83. Novacek MJ, Rougier GW, Wible JR, McKenna MC, Dashzeveg D, Horovitz I (1997) Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia. Nature 389:483–486PubMedCrossRefGoogle Scholar
  84. Patterson B (1956) Early Cretaceous mammals and the evolution of mammalian molar teeth. Fieldiana (Geol) 13:1–105Google Scholar
  85. Pridmore, PA (1985) Terrestrial locomotion in monotremes (Mammalia, Monotremata). J Zool Lond (A) 205:53–73CrossRefGoogle Scholar
  86. Rougier GW (1993) Vincelestes neuquenianus Bonaparte (Mammalia, Theria), un primitivo mammifero del Cretacico Inferior de la Cuenca Neuqina. Dissertation, Universidad Nacional de Buenos AiresGoogle Scholar
  87. Rougier GW, Ji Q, Novacek MJ (2003b) A new symmetrodont mammal with fur impressions from the Mesozoic of China. Acta Geol Sin 77:7–14CrossRefGoogle Scholar
  88. Rougier GW, Spurlin BK, Kik P (2003a) A new specimen of Eurylambda aequicrurius and considerations of “symmetrodont” dentition and relationships. Am Mus Novitates 3398:1–15CrossRefGoogle Scholar
  89. Rougier GW, Wible JR, Novacek MJ (1998) Implications of Deltatheridium specimens for early marsupial history. Nature 396:459–463PubMedCrossRefGoogle Scholar
  90. Rowe T (1988) Definition, diagnosis, and origin of Mammalia. J Vertebr Paleontol 8:241–264CrossRefGoogle Scholar
  91. Salton JA, Sargis EJ (2008a) Evolutionary morphology of the Tenrecoidea (Mammalia) forelimb skeleton. In: Sargis EJ and Dagosto M (eds) Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay, Springer: Dordrecht, The Netherlands, pp. 51–71Google Scholar
  92. Salton JA, Sargis EJ (2008b) Evolutionary morphology of the Tenrecoidea (Mammalia) carpal complex. Biol J Linn Soc 93: 267–288CrossRefGoogle Scholar
  93. Salton JA, Sargis EJ (2009) Evolutionary morphology of the Tenrecoidea (Mammalia) hindlimb skeleton. J Morphol 270:367–387PubMedCrossRefGoogle Scholar
  94. Salton JA, Szalay FS (2004) The tarsal complex of Afro-Malagasy Tenrecoidea: a search for phylogenetically meaningful characters. J Mammal Evol 11:73–104CrossRefGoogle Scholar
  95. Sargis EJ (2001a) A preliminary qualitative analysis of the axial skeleton of tupaiids (Mammalia, Scandentia): functional morphology and phylogenetic implications. J Zool Lond 253:473–483CrossRefGoogle Scholar
  96. Sargis EJ (2001b) The grasping behaviour, locomotion and substrate use of the tree shrews Tupaia minor and T. tana (Mammalia, Scandentia). J Zool Lond 253:485–490CrossRefGoogle Scholar
  97. Sargis EJ (2002) Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 253:10–42PubMedCrossRefGoogle Scholar
  98. Sereno PC (2006) Shoulder girdle and forelimb in a Cretaceous multituberculate: form, functional evolution, and a proposal for basal mammalian taxonomy. In: Carrano MT, Gaudin TJ, Blob RW, Wible JR (eds) Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles. University of Chicago Press, Chicago, pp 315–370Google Scholar
  99. Shattuck MR, Williams SA (2010) Arboreality has allowed for the evolution of increased longevity in mammals. Proc Nat Acad Sci USA 107:4635–4639PubMedCrossRefGoogle Scholar
  100. Signogneau-Russell D (1999) Réévaluation des Peramura (Mammalia, Theria) sur la base de nouveaux spécimens du Crétacé inférieur d’Angleterre et du Maroc. Geodiversitas 21:93–127Google Scholar
  101. Simpson GG (1928) A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. Trustees of the British Museum, LondonGoogle Scholar
  102. Smythe N (1986) Competition and resource partitioning in the guild of neotropical terrestrial frugivorous mammals. Ann Rev Ecol Syst 17: 169–188CrossRefGoogle Scholar
  103. Sues H-D, Jenkins FA Jr (2006) The postcranial skeleton of Kayentatherium wellesi from the Lower Jurassic Kayenta Formation of Arizona and the phylogenetic significance of postcranial features in tritylodontid cynodonts. In: Carrano MT, Blob RW, Gaudin TJ and Wible JR (eds) Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles. The University of Chicago Press, Chicago, pp. 114–152Google Scholar
  104. Sun A-L, Li Y-H (1985) The postcranial skeleton of Jurassic tritylodonts from Sichuan Province. Vertebr PalAsiatica 23:135–151Google Scholar
  105. Sweetman SC (2008) A spalacolestine spalacotheriid (Mammalia, Trechnotheria) from the Early Cretaceous (Barremian) of southern England and its bearing on spalacotheriid evolution. Palaeontology 51:1367–1385CrossRefGoogle Scholar
  106. Szalay FS (1994) Evolutionary History of the Marsupials and an Analysis of Osteological Characters. Cambridge University Press, CambridgeGoogle Scholar
  107. Szalay FS, Sargis EJ (2001) Model-based analysis of postcranial osteology of marsupials from the Palaeocene of Itaboraí (Brazil) and the phylogenetics and biogeography of Metatheria. Geodiversitas 23:139–302Google Scholar
  108. Szalay FS, Sargis EJ (2006) Cretaceous therian tarsals and the metatherian-eutherian dichotomy. J Mammal Evol 13:172–217Google Scholar
  109. Taylor ME (1974) The functional anatomy of the forelimb of some African Viverridae (Carnivora). J Morphol 143:307–336PubMedCrossRefGoogle Scholar
  110. Taylor ME (1976) The functional anatomy of the hindlimb of some African Viverridae (Carnivora). J Morphol 148:227–253PubMedCrossRefGoogle Scholar
  111. Tsubamoto T, Rougier GW, Isaji S, Manabe M, Forasiepi AM (2004) New Early Cretaceous spalacotheriid “symmetrodont” mammal from Japan. Acta Palaeontol Pol 49:329–346Google Scholar
  112. Vázquez-Molinero R, Martin T, Fischer MS, Frey R (2001) Comparative anatomical investigations of the postcranial skeleton of Henkelotherium guimarotae Krebs, 1991 (Eupantotheria, Mammalia) and their implications on its locomotion. Mitteil Mus Nat Berlin, Zool Reihe 77:207–216CrossRefGoogle Scholar
  113. Weisbecker V, Warton DI (2006) Evidence at hand: diversity, functional implications and locomotor prediction in intrinsic hand proportions of diprotodontian marsupials. J Morphol 267:1469–1485PubMedCrossRefGoogle Scholar
  114. Wible JR, Rougier GW, Novacek MJ, Asher RJ (2009) The eutherian mammal Maelestes gobiensis from the Late Cretaceous of Mongolia and the phylogeny of Cretaceous Eutheria. Bull Am Mus Nat Hist 327:1–123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of BiologyUniversity of WashingtonSeattleUSA
  2. 2.Department of Earth SciencesNanjing UniversityNanjingChina
  3. 3.Section of Vertebrate Paleontology, Carnegie Museum of Natural HistoryPittsburghUSA
  4. 4.Department of Organismal Biology and AnatomyThe University of ChicagoChicagoUSA

Personalised recommendations