Journal of Mining Science

, Volume 46, Issue 6, pp 593–599 | Cite as

Geomechanics rock mechanics aspects in deep well drilling

  • L. A. Nazarova
  • L. A. Nazarov
  • I. N. El’tsov
  • V. A. Kindyuk


Based on the proposed modeling approach to deep well drilling with the use of equations of state of an elastoplastic medium with dilatancy, the authors have found nonlinear relationship between dimension of probable failure zones in the wellbore vicinity and the value of lateral thrust coefficient, as well as they explain the causes of rise in speed of drilling at the depth of 3–4 kilometers.


Rock mass vertical well drilling elastoplastic medium with dilatancy irreversible strains finite element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Kalinin, Oil and Gas Well Drilling [in Russian], TsentrLitNefteGaz, Moscow (2008).Google Scholar
  2. 2.
    A. M. Svalov, Mechanics of Drilling and Oil-and-Gas Production Processes [in Russian], “Librokom” Books House, Moscow (2009).Google Scholar
  3. 3.
    L. V. Budyko, “Alignment of logging instruments in an uncased well,” Karotazhnik, No. 95 (2002).Google Scholar
  4. 4.
    M. D. Zoback, Reservoir Geomechanics, Cambridge University Press, Cambridge (2007).CrossRefGoogle Scholar
  5. 5.
    A. Settari and V. Sen, “The role of geomechanics in integrated reservoir modeling,” The Leading Edge, 26, No. 5 (2007).Google Scholar
  6. 6.
    N. Barton, Rock Quality, Seismic Velocity, Attenuation and Anisotropy, Taylor and Francis Group, London, UK (2007).Google Scholar
  7. 7.
    V. N. Oparin, B. F. Simonov, L. A. Nazarov, et al., Geomechanics and Geotechnics Foundations to Oil Production Enhancement with Vibro-Wave Technologies [in Russian], Nauka, Novosibirsk (2010).Google Scholar
  8. 8.
    J. M. Carcione, H. B. Helle, and A. F. Gangi, “Theory of borehole stability when drilling through salt formations,” Geophysics, 71, F31 (2006).CrossRefGoogle Scholar
  9. 9.
    A. N. Papusha and D. P. Gontarev, “Assessment of stress-strain state in rocks in the vicinity of a super deep vertical well,” Gorn. Inform.-Analit. Byull., No. 5 (2010).Google Scholar
  10. 10.
    J. Tronvoll, I. Larsen, L. Li, et al., “Rock mechanics aspects of well productivity in marginal sandstone reservoirs: Problems, analysis methods, and remedial actions,” in: Proceedings of the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana (2004).Google Scholar
  11. 11.
    R. T. Ewy, “Wellbore-stability by use of a modified Lade criterion,” SPE Drill & Compl., 14, No. 2 (1999).Google Scholar
  12. 12.
    J. Wang, R. G. Wan, A. Settari, and D. Walters, “Prediction of volumetric sand production and wellbore stability analysis of a well at different completion schemes,” in: Alaska Rocks 2005 Proceedings of the 40th U.S. Symposium on Rock Mechanics, Anchorage (2005).Google Scholar
  13. 13.
    M. J. Kennedy, I. D. Moore, M. Asce, and G. D. Skinner, “Development of tensile hoop stress during horizontal directional drilling through sand,” International Journal of Geomechanics, 6, No. 5 (2006).Google Scholar
  14. 14.
    A. White, B. McIntyre, D. Castillo, et al., “Updating the geomechanical model and calibrating pore pressure from 3D seismic data from the Gnu-1 Well, Dampier, Subbasin, Australia,” SPE Reservoir Evaluation&Engineering, June(2009).Google Scholar
  15. 15.
    V. N. Nikolaevsky, Geomechanics and Fluid Dynamics [in Russian], Nedra, Moscow (1996).Google Scholar
  16. 16.
    O. Zienkiewicz, Finite Element Method in Engineering Science, McGraw-Hill (1971).Google Scholar
  17. 17.
    L. A. Nazarova and L. A. Nazarov, “Dilatancy and the formation and evolution of disintegration zones in the vicinity of heterogeneities in a rock mass,” Journal of Mining Science, No. 5 (2009).Google Scholar
  18. 18.
    S. V. Kuznetsov, V. N. Odintsev, M. E. Slonim, and V. A. Trofimov, Methodology for Rock Pressure Calculation [in Russian], Nauka, Moscow (1981).Google Scholar
  19. 19.
    K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1982).Google Scholar
  20. 20.
    Yu. P. Stefanov and M. Tierselen, “Modeling of the high-porous material behavior during origination of the localized compression strips,” Fiz. Mezomekh., 10, No. 1 (2007).Google Scholar
  21. 21.
    V. V. Rzhevsky and G. Ya. Novik, Fundamentals of Physics of Rocks [in Russian], Nedra, Moscow (1973).Google Scholar
  22. 22.
    M. L. Zoback, “First- and second-order patterns of stress in the lithosphere: The world stress map project,” Journal of Geophysical Research, 97, No. B8 (1992).Google Scholar
  23. 23.
    T. Engelder, Stress Regimes in the Lithosphere, Princeton, New Jersey (1993).Google Scholar
  24. 24.
    L. A. Nazarova, “Estimating the stress and strain field of the Earth’s crust on the basis of seismotectonic data,” Journal of Mining Science, No. 1 (1999).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • L. A. Nazarova
    • 1
  • L. A. Nazarov
    • 1
  • I. N. El’tsov
    • 2
  • V. A. Kindyuk
    • 2
  1. 1.Institute of Mining, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Oil and Gas Geology and Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations