Advertisement

Journal of Mining Science

, Volume 44, Issue 3, pp 225–234 | Cite as

Effect of viscosity of partings in block-hierarchical media on propagation of low-frequency pendulum waves

  • N. I. Aleksandrova
  • E. N. Sher
  • A. G. Chernikov
Geomechanics

Abstract

The study focuses on the pendulum-type wave propagation in an assembly of steel rods parted alternatively by rubber and foam plastic and exposed to impulse loading. The proposed numerical model describes this system as a chain of masses linked by elastic springs and viscous damping elements. At large times from the loading onset, the asymptotical estimates of velocities and accelerations of the masses are obtained. The numerical calculations, analytical solutions and experimental data are compared, and the domain of applicability of the analytical evaluations is delimited. The authors show that this model adequately describes perturbations in the system of rods with alternating visco-elastic partings.

Keywords

Impact block hierarchical medium seismic waves pendulum-type waves partings elasticity viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Sadovsky, “Natural lumpiness of rocks,” Dokl. AN SSSR, 247, No. 4 (1979).Google Scholar
  2. 2.
    M. V. Kurlenya, V. N. Oparin, and A. A. Eremenko, “Relation of linear block dimensions of rock to crack opening in the structural hierarchy of masses,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1993).Google Scholar
  3. 3.
    M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, “Formation of elastic wave packages in block media under impulse excitation. Pendulum-type waves V μ,” Dokl. AN SSSR, 333, No. 4 (1993).Google Scholar
  4. 4.
    M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, “Pendulum-type waves. Part I: Study of the problem and measuring instrument and computer complexes,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1996).Google Scholar
  5. 5.
    M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, “Pendulum-type waves. Part II: Experimental methods and main results of physical modeling,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (1996).Google Scholar
  6. 6.
    M. V. Kurlenya, V. N. Oparin, V. I. Vostrikov, V. V. Arshavskii, and N. Mamadaliev, “Pendulu-type waves. PartIII: data of on-site observations,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1996).Google Scholar
  7. 7.
    N. I. Aleksandrova, “Elastic wave propagation in block medium under impulse loading,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2003).Google Scholar
  8. 8.
    N. I. Aleksandrova and E. N. Sher, “Modeling of wave propagation in block media,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2004).Google Scholar
  9. 9.
    N. I. Aleksandrova, A. G. Chernikov, and E. N. Sher, “Experimental investigation into the one-dimensional calculated model of wave propagation in block medium,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (2005).Google Scholar
  10. 10.
    E. N. Sher, N. I. Aleksandrova, M. V. Ayzenberg-Stepanenko, and A. G. Chernikov, “Influence of the block-hierarchical structure of rocks on the peculiarities of seismic wave propagation,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2007).Google Scholar
  11. 11.
    L. I. Slepyan, Non-Stationary Elastic Waves [in Russian], Sudostroenie, Moscow (1972).Google Scholar
  12. 12.
    E. Yanke, F. Emde, and F. Lesh, Special Functions [in Russian], Nauka, Moscow (1968).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • N. I. Aleksandrova
    • 1
  • E. N. Sher
    • 1
  • A. G. Chernikov
    • 1
  1. 1.Institute of Mining, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations