Advertisement

Journal of Mining Science

, Volume 43, Issue 5, pp 477–488 | Cite as

Calculation model for breaking a lump off a rock mass by an impact of a blunt wedge-like tool

  • G. V. Basheev
  • P. A. Martynyuk
  • E. N. Sher
Rock Failure

Abstract

A mathematical model has been developed for the layer-by-layer fracture of a rock by a blunt wedge. The reduced efficiency of breaking by the blunt tool is estimated. It has been shown that there exists a limiting impact angle that confines the lump breaking off the rock mass.

Wedge impact breaking-off fracture trajectory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. V. Basheev, “Calculated scheme of rock lump splitting off under the impact of wedge beneath a bench,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (2004).Google Scholar
  2. 2.
    G. V. Basheev, P. A. Martynyuk, and E. N. Sher, “Calculated model of rock chopping by frequentative impacts of a wedge-like instrument at an angle to the free surface,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (2005).Google Scholar
  3. 3.
    I. N. Sneddon, Fourier Transforms, McGraw-Hill, New-York (1951).Google Scholar
  4. 4.
    P. Chadwick, A. Kox, and H. Hopkins, “Mechanics of deep underground explosions,” Phil. Trans. Royal Soc. London, Ser. A Maths., Physics Sci., 256 (1963–1964).Google Scholar
  5. 5.
    V. I. Mashukov, V. D. Baryshnikov, and N. V. Pirlya, “Structure of a rock and its strength chart,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1990).Google Scholar
  6. 6.
    E. N. Sher, “Example of calculating the propagation of radial cracks formed upon blasting in a brittle medium in a quasistatic approximation,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1982).Google Scholar
  7. 7.
    R. A. Westman, “Pressurized star crack,” J. Math, And Phys., 43, No. 3 (1964).Google Scholar
  8. 8.
    E. N. Sher, “One case of equilibrium in a system of radial cracks,” Prikl. Mekh. Tekh. Fiz., No. 5 (1974).Google Scholar
  9. 9.
    G. V. Basheev, V. P. Efimov, and P. A. Martynyuk, “Calculation model for a rock fracture by a wedge-like percussive instrument,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1999).Google Scholar
  10. 10.
    M. P. Savruk, Two-Dimension Problems of Elasticity for Bodies with Fractures [in Russian], Naukova Dumka, Kiev (1981).Google Scholar
  11. 11.
    T. E. Alekseeva and P. A. Martynyuk, “Crack emergence trajectories at a free surface,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1991).Google Scholar
  12. 12.
    V. P. Efimov, P. A. Martynyuk, and E. N. Sher, “Trajectories of fractures come-out onto the free surface during wedging,” Prikl. Mekh. Tekh. Fiz., No. 6 (1995).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • G. V. Basheev
    • 1
  • P. A. Martynyuk
    • 1
  • E. N. Sher
    • 1
  1. 1.Institute of Mining, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations