Skip to main content
Log in

Interphase layers of water-heterogeneous flotation systems as hydrated nanoassociates

  • Mineral Dressing
  • Published:
Journal of Mining Science Aims and scope

Abstract

The water-structural aspects of evolution of interphase nanoformations are considered. Monitoring the state of nanoformations provides the control of hydrophobic interaction and flotation macroprocesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. I. Petrov, Clusters and Small Particles [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  2. G. S. Hodakov, Physics of Grinding [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  3. V. I. Klassen, Problems of Aeration and Flotation Theory [in Russian], Goskhimizdat, Moscow (1949).

    Google Scholar 

  4. I. N. Plaksin, R. Sh. Shafeev, and V. A. Chanturia, Effect of Mineral Surface Heterogeneity on Interaction with Flotation Reagents [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  5. D. N. Abishev and Yu. P. Eremin, “Finely-disseminated ore processing is a priority direction of mining and smelting complex,” Promeshlenost Kazakhstana, No. 2 (2000).

  6. V. E. Vigdergauz, “Kinetics of bubble — particle interaction, surface hydrophobicity and interfacial phenomena in sulphide mineral flotation,” in: Centenary of Flotation Proceedings, AIMM, Brisbane (2005).

    Google Scholar 

  7. N. S. Bekturganov, Yu. P. Eremin, A. A. Zharmenov, and V. G. Zagainov, “Nanotechnological aspects of flotation process,” Promyshlennost Kazakhstana, No. 1 (2006).

  8. A. F. Taggart, Handbook of Ore Dressing, John Wiley and Sons, New-York (1927).

    Google Scholar 

  9. A. M. Gaudin, Flotation, Mc.Graw-Hill Book Company, New-York (1932).

    Google Scholar 

  10. K. L. Satherland and I. W. Work, Principles of Flotation, AIMM, Mellown (1955).

    Google Scholar 

  11. I. Langmuir, “The structure of molecular groups formed on surfaces of liquids,” Proc. Nat. Acad. Sci., 3 (1917).

  12. S. I. Mitrophanov, Selective Flotation [in Russian], Moscow (1958).

  13. G. Nemethy, and H. Scheraga, G. Chem. Phisica, 36, No. 12 (1962).

  14. V. I. Revnivtsev, Yu. P. Eremin, V. A. Glembotskii, G. A. Denisov, and N. N. Havskii, “The USSR Scientific Discovery No. 370. Phenomenon of pre-hypersonic activation of interdisperse interactions in aqueous systems,” in: USSR State Register of Discoveries [in Russian], September 14, 1989 with the priority from January 20, 1972.

  15. G. S. Berger, N. K. Omarova, M. T. Baimakhanov, and E. G. Pershikova, “On role of hydrophobic interactions for the control of mineral floatability under pulp heating,” Izv. Vuzov, Tsvet. Met., No.5 (1978).

  16. V. A. Chanturia and R. Sh. Shafeev, Chemistry of Surface Phenomena under Flotation [in Russian], Nedra, Moscow (1977).

    Google Scholar 

  17. V. A. Chanturia and V. E. Vigdergauz, Electrochemistry of Sulphides/Theory and Practice of Flotation [in Russian], Nauka, Moscow (1993).

    Google Scholar 

  18. V. A. Chanturia, V. E. Vigdergauz, T. V. Nedosekina, M. V. Panova, and N. K. Gromova, “ Electrochemical study of wettability of sulphide minerals under flotation conditions: pyrite, pyrrhotite, and arsenopyrite,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1997).

  19. V. A. Glembotskii and Yu. P. Eremin, “On effect of ultrasonic treatment on the modification of bubble surface properties in elementary flotation,” Dokl Akad Nauk SSSR, 183, No. 4 (1968).

    Google Scholar 

  20. L. Poling, General Chemistry [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  21. Yu. P. Eremin, A. A. Zharmenov, V. A. Chanturia, V. E. Vigdergauz, N. S. Bektuganov, et al., “ Theory and technology of processing of natural and technogenic mineral materials,” in: Complex Processing of Mineral Raw Materials in Kazakhstan (State, Problems, and Solutions) [in Russian], 2, Foliant, Astana (2003).

    Google Scholar 

  22. G. Nemethy, “Hydrophobe Wechselwirkungen,” Angew. Chem., 79 (1967).

  23. H. A. Scheraga, Protein Structure. Acad. Press, New-York, London (1961).

    Google Scholar 

  24. G. Shuster, Determinate Chaos [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  25. Yu. L. Klimantovich, Statistical Theory of Open Systems [in Russian], 1, Yanus, Moscow (1995), 2, Yanus, Moscow (1999).

    Google Scholar 

  26. Yu. A. Dyadin and K. A. Udachin, “Clatratic polyhydrates of peralkylated salts and their analogues,” Zh. Strukt. Khim., 28, No. 3 (1987).

    Google Scholar 

  27. Yu. P. Eremin, Inclusion Phenomena and Hydrophobic Interactions./ Inclusion Compounds [in Russian], Izd. SB RAS, Novosibirsk (1989).

    Google Scholar 

  28. S. P. Gauda, Bound Water. Facts and Hypotheses [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  29. A. A. Abramov, “Theoretical analysis of formation of sorption layer of anion collector and hydrophobization of mineral surface,” Tsvet. Met., No. 11 (2005).

  30. R. Horn, Marine Chemistry / Water Structure and Hydrosphere Chemistry [Russian translation], Mir, Moscow (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The pubication is a pilot scheme.

__________

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, No. 2, pp. 99–113, March–April, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigdergauz, V.E., Eremin, Y.P., Zharmenov, A.A. et al. Interphase layers of water-heterogeneous flotation systems as hydrated nanoassociates. J Min Sci 43, 198–211 (2007). https://doi.org/10.1007/s10913-007-0022-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10913-007-0022-6

Navigation