Journal of Mining Science

, Volume 40, Issue 4, pp 350–354 | Cite as

Increase in information content of the resonance acoustic method for determination of the rock mass properties

  • L. S. Zagorskii
  • V. L. Shkuratnik
  • N. A. Pustovoitova


An algorithm of processing of data obtained by the resonance acoustic method of structural analysis is substantiated. The algorithm enables acquisition of information on distribution of rock density in the vicinity of mine workings. An example is cited for the way of using the algorithm to estimate the density of layer in the roof of workings in coal mines.


resonance method structural analysis of rock mass elastic waves density profile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. L. Chernyak and S. A. Yarunin, Control of Rock Mass State [in Russian], Nedra, Moscow (1995).Google Scholar
  2. 2.
    Yu. N. Baukov and V. N. Danilov, “Physical foundations of the resonance method for controlling foliations in the roof of mine workings,” Izv. Vuzov, Gorn. Zh., No. 1 (1988).Google Scholar
  3. 3.
    M. D. Molev, Geophysical Prediction of Mining and Geological Conditions for Underground Mining of Coal Seams [in Russian], YuRGTU, Novocherkassk (2000).Google Scholar
  4. 4.
    V. S. Yamshchikov, E. E. Sidorov, and Yu. N. Baukov, “Vibroacoustic method for controlling quality of layered constructions,” Defektoskopia, No. 5 (1978).Google Scholar
  5. 5.
    A. G. Glikman, “Elastic waves in layered media,” in: Collected Works of the VNIIG [in Russian], Leningrad (1986).Google Scholar
  6. 6.
    V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1981).Google Scholar
  7. 7.
    S. I. Kabanikhin, Projection-Difference Method of Determining the Coefficients of Hyperbolic Equations [in Russian], Nauka, Novosibirsk (1988).Google Scholar
  8. 8.
    A. A. Tikhonov, A. V. Goncharskii, V. V. Stepanov, and A. G. Yagola, Numerical Methods of Incorrect Problem Solution [in Russian], Nauka, Moscow (1990)Google Scholar
  9. 9.
    L. Hatton, M. Wardington, and J. Meikin, Seismic Data Processing. Theory and Practice [Russian translation], Mir, Moscow (1989).Google Scholar
  10. 10.
    I. M. Gel’fand and B. M. Levitan, “Determination of differential equation by its spectral function,” Izv. AN SSSR, Ser. Matemat., 15, No. 4 (1951).Google Scholar
  11. 11.
    A. S. Alekseev and V. I. Dobrinskii, “Some questions on practical use of the inverse dynamic problems of seismics,” in: Mathematical Problems of Geophysics [in Russian], Issue 6, Part II, VTs SO AN, Novosibirsk (1975).Google Scholar
  12. 12.
    L. S. Zagorskii, Spectral Methods for Determining a Rock Mass Structure [in Russian], V. N. Strakhov (ed.), “Graal” Publishing Corporation, Moscow (2001).Google Scholar
  13. 13.
    L. A. Nazarov, “Determination of properties of structured rock mass by acoustic method,” Fiz.-Tekh. Probl. Razrab. Polezn. Mop., No. 3 (1999).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • L. S. Zagorskii
    • 1
  • V. L. Shkuratnik
    • 1
  • N. A. Pustovoitova
    • 1
  1. 1.Moscow State Mining UniversityMoscowRussia

Personalised recommendations