A Novel Effect of β-Adrenergic Receptor on Mammary Branching Morphogenesis and its Possible Implications in Breast Cancer

  • Lucía Gargiulo
  • María May
  • Ezequiel M. Rivero
  • Sabrina Copsel
  • Caroline Lamb
  • John Lydon
  • Carlos Davio
  • Claudia Lanari
  • Isabel A. Lüthy
  • Ariana Bruzzone


Understanding the mechanisms that govern normal mammary gland development is crucial to the comprehension of breast cancer etiology. β-adrenergic receptors (β-AR) are targets of endogenous catecholamines such as epinephrine that have gained importance in the context of cancer biology. Differences in β2-AR expression levels may be responsible for the effects of epinephrine on tumor vs non-tumorigenic breast cell lines, the latter expressing higher levels of β2-AR. To study regulation of the breast cell phenotype by β2-AR, we over-expressed β2-AR in MCF-7 breast cancer cells and knocked-down the receptor in non-tumorigenic MCF-10A breast cells. In MCF-10A cells having knocked-down β2-AR, epinephrine increased cell proliferation and migration, similar to the response by tumor cells. In contrast, in MCF-7 cells overexpressing the β2-AR, epinephrine decreased cell proliferation and migration and increased adhesion, mimicking the response of the non-tumorigenic MCF-10A cells, thus underscoring that β2-AR expression level is a key player in cell behavior. β-adrenergic stimulation with isoproterenol induced differentiation of breast cells growing in 3-dimension cell culture, and also the branching of murine mammary epithelium in vivo. Branching induced by isoproterenol was abolished in fulvestrant or tamoxifen-treated mice, demonstrating that the effect of β-adrenergic stimulation on branching is dependent on the estrogen receptor (ER). An ER-independent effect of isoproterenol on lumen architecture was nonetheless found. Isoproterenol significantly increased the expression of ERα, Ephrine-B1 and fibroblast growth factors in the mammary glands of mice, and in MCF-10A cells. In a poorly differentiated murine ductal carcinoma, isoproterenol also decreased tumor growth and induced tumor differentiation. This study highlights that catecholamines, through β-AR activation, seem to be involved in mammary gland development, inducing mature duct formation. Additionally, this differentiating effect could be resourceful in a breast tumor context.


Mammary gland development Beta-adrenergic receptor Breast cancer Non-tumorigenic breast epithelial cells Normal mammary gland Estrogen receptor 



In the memory of our friend Hervé Paris. We gratefully thank Federico Carrizo from Laboratorios Beta and Denver Farma Argentina for kindly providing insulin and Michel Bouvier from Département de Biochimie, Université de Montréal for kindly providing β2-AR plasmid. Thanks are also due to KLM for fulvestrant and Bruno Luna and Anita Sahores for their technical help. Authors declare there are no conflicts of interest. This work was supported by a grant from PICT N° 103 (ANPCyT), INC and PIP N° 539 from CONICET, Fundación René Barón and Fundación Roemmers.


  1. 1.
    Hovey RC, Trott JF, Vonderhaar BK. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia. 2002;7(1):17–38.CrossRefPubMedGoogle Scholar
  2. 2.
    Zeps N, Bentel JM, Papadimitriou JM, D’Antuono MF, Dawkins HJ. Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation. 1998;62(5):221–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang X, Martinez D, Koledova Z, Qiao G, Streuli CH, Lu P. FGF ligands of the postnatal mammary stroma regulate distinct aspects of epithelial morphogenesis. Development. 2014;141(17):3352–62.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Brisken C, Ataca D. Endocrine hormones and local signals during the development of the mouse mammary gland. Wiley Interdiscip Rev Dev Biol. 2015;4(3):181–95.CrossRefPubMedGoogle Scholar
  5. 5.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefPubMedGoogle Scholar
  6. 6.
    Hasen NS, O’Leary KA, Auger AP, Schuler LA. Social isolation reduces mammary development, tumor incidence, and expression of epigenetic regulators in wild-type and p53-heterozygotic mice. Cancer Prev Res (Phila). 2010;3(5):620–9.CrossRefGoogle Scholar
  7. 7.
    Boyd AL, Salleh A, Humber B, Yee J, Tomes L, Kerr LR. Neonatal experiences differentially influence mammary gland morphology, estrogen receptor {alpha} protein levels, and carcinogenesis in BALB/c mice. Cancer Prev Res (Phila). 2010;3(11):1398–408.CrossRefGoogle Scholar
  8. 8.
    Cole SW, Sood AK. Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res. 2012;18(5):1201–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Tang J, Li Z, Lu L, Cho CH. Beta-adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Semin Cancer Biol. 2013;23(6 Pt B):533–42.CrossRefPubMedGoogle Scholar
  10. 10.
    Perez PC, Bruzzone A, Sarappa M, Castillo L, Luthy I. Involvement of alpha2- and beta2-adrenoceptors on breast cancer cell proliferation and tumour growth regulation. Br J Pharmacol. 2012;166(2):721–36.CrossRefGoogle Scholar
  11. 11.
    Slotkin TA, Zhang J, Dancel R, Garcia SJ, Willis C, Seidler FJ. Beta-adrenoceptor signaling and its control of cell replication in MDA-MB-231 human breast cancer cells. Breast Cancer ResTreat. 2000;60(2):153–66.CrossRefGoogle Scholar
  12. 12.
    Carie AE, Sebti SM. A chemical biology approach identifies a beta-2 adrenergic receptor agonist that causes human tumor regression by blocking the Raf-1/Mek-1/Erk1/2 pathway. Oncogene. 2007;26(26):3777–88.CrossRefPubMedGoogle Scholar
  13. 13.
    Inderwies T, Pfaffl MW, Meyer HH, Blum JW, Bruckmaier RM. Detection and quantification of mRNA expression of alpha- and beta-adrenergic receptor subtypes in the mammary gland of dairy cows. Domest Anim Endocrinol. 2003;24(2):123–35.CrossRefPubMedGoogle Scholar
  14. 14.
    Marchetti B, Fortier MA, Poyet P, Follea N, Pelletier G, Labrie F. Beta-adrenergic receptors in the rat mammary gland during pregnancy and lactation: characterization, distribution, and coupling to adenylate cyclase. Endocrinology. 1990;126(1):565–74.CrossRefPubMedGoogle Scholar
  15. 15.
    Wellner RB, He XJ, Marmary Y, Baum BJ. Functional beta-adrenergic receptors in a human mammary cell line (HBL-100). Biochem Pharmacol. 1988;37(15):3035–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Bruzzone A, Sauliere A, Finana F, Senard JM, Luthy I, Gales C. Dosage-dependent regulation of cell proliferation and adhesion through dual beta2-adrenergic receptor/cAMP signals. FASEB J. 2014;28(3):1342–54.CrossRefPubMedGoogle Scholar
  17. 17.
    Cakir Y, Plummer III HK, Tithof PK, Schuller HM. Beta-adrenergic and arachidonic acid-mediated growth regulation of human breast cancer cell lines. Int J Oncol. 2002;21(1):153–7.PubMedGoogle Scholar
  18. 18.
    Shi M, Liu D, Duan H, Qian L, Wang L, Niu L, et al. The beta2-adrenergic receptor and Her2 comprise a positive feedback loop in human breast cancer cells. Breast Cancer Res Treat. 2011;125(2):351–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Re G, Badino P, Girardi C, Di Carlo F. Effects of a beta 2-agonist (clenbuterol) on cultured human (CG-5) breast cancer cells. Pharmacol Res. 1992;26(4):377–84.CrossRefPubMedGoogle Scholar
  20. 20.
    Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70(18):7042–52.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gargiulo L, Copsel S, Rivero EM, Gales C, Senard JM, Luthy IA, et al. Differential beta(2)-adrenergic receptor expression defines the phenotype of non-tumorigenic and malignant human breast cell lines. Oncotarget. 2014;5(20):10058–69.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Soule HD, Vazguez J, Long A, Albert S, Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973;51(5):1409–16.CrossRefPubMedGoogle Scholar
  23. 23.
    Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol. 2011;5(1):5–23.CrossRefPubMedGoogle Scholar
  24. 24.
    Soule HD, Maloney TM, Wolman SR, Peterson Jr WD, Brenz R, McGrath CM, et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990;50(18):6075–86.PubMedGoogle Scholar
  25. 25.
    Prat A, Karginova O, Parker JS, Fan C, He X, Bixby L, et al. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes. Breast Cancer Res Treat. 2013;142(2):237–55.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vazquez SM, Mladovan AG, Perez C, Bruzzone A, Baldi A, Luthy IA. Human breast cell lines exhibit functional alpha2-adrenoceptors. Cancer Chemother Pharmacol. 2006;58(1):50–61.CrossRefPubMedGoogle Scholar
  27. 27.
    Tubio MR, Fernandez N, Fitzsimons CP, Copsel S, Santiago S, Shayo C, et al. Expression of a G protein-coupled receptor (GPCR) leads to attenuation of signaling by other GPCRs: experimental evidence for a spontaneous GPCR constitutive inactive form. J Biol Chem. 2010;285(20):14990–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lavoie C, Mercier JF, Salahpour A, Umapathy D, Breit A, Villeneuve LR, et al. Beta 1/beta 2-adrenergic receptor heterodimerization regulates beta 2-adrenergic receptor internalization and ERK signaling efficacy. J Biol Chem. 2002;277(38):35402–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003;30(3):256–68.CrossRefPubMedGoogle Scholar
  30. 30.
    Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery Jr CA, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995;9(18):2266–78.CrossRefPubMedGoogle Scholar
  31. 31.
    Sahores A, Luque GM, Wargon V, May M, Molinolo A, Becu-Villalobos D, et al. Novel, low cost, highly effective, handmade steroid pellets for experimental studies. PLoS One. 2013;8(5):e64049.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Vanzulli S, Efeyan A, Benavides F, Helguero LA, Peters G, Shen J, et al. p21, p27 and p53 in estrogen and antiprogestin-induced tumor regression of experimental mouse mammary ductal carcinomas. Carcinogenesis. 2002;23(5):749–58.CrossRefPubMedGoogle Scholar
  33. 33.
    Russo J, Russo IH. Development of the human breast. Maturitas. 2004;49(1):2–15.CrossRefPubMedGoogle Scholar
  34. 34.
    Gouon-Evans V, Pollard JW. Unexpected deposition of brown fat in mammary gland during postnatal development. Mol Endocrinol. 2002;16(11):2618–27.CrossRefPubMedGoogle Scholar
  35. 35.
    Kouros-Mehr H, Werb Z. Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn. 2006;235(12):3404–12.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wargon V, Riggio M, Giulianelli S, Sequeira GR, Rojas P, May M, et al. Progestin and antiprogestin responsiveness in breast cancer is driven by the PRA/PRB ratio via AIB1 or SMRT recruitment to the CCND1 and MYC promoters. Int J Cancer. 2015;136(11):2680–92.CrossRefPubMedGoogle Scholar
  37. 37.
    Silberstein GB, Strickland P, Trumpbour V, Coleman S, Daniel CW. In vivo, cAMP stimulates growth and morphogenesis of mouse mammary ducts. Proc Natl Acad Sci U S A. 1984;81(15):4950–4.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Liu S, Lin YC. Transformation of MCF-10A human breast epithelial cells by zeranol and estradiol-17beta. Breast J. 2004;10(6):514–21.CrossRefPubMedGoogle Scholar
  39. 39.
    Chou J, Provot S, Werb Z. GATA3 in development and cancer differentiation: cells GATA have it! J Cell Physiol. 2010;222(1):42–9.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Draoui A, Vandewalle B, Hornez L, Revillion F, Lefebvre J. Beta-adrenergic receptors in human breast cancer: identification, characterization and correlation with progesterone and estradiol receptors. Anticancer Res. 1991;11(2):677–80.PubMedGoogle Scholar
  41. 41.
    Powe DG, Entschladen F. Targeted therapies: using beta-blockers to inhibit breast cancer progression. Nat Rev Clin Oncol. 2011;8(9):511–2.CrossRefPubMedGoogle Scholar
  42. 42.
    Powe DG, Voss MJ, Zanker KS, Habashy HO, Green AR, Ellis IO, et al. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget. 2010;1(7):628–38.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Monami M, Filippi L, Ungar A, Sgrilli F, Antenore A, Dicembrini I, et al. Further data on beta-blockers and cancer risk: observational study and meta-analysis of randomized clinical trials. Curr Med Res Opin. 2013;29(4):369–78.CrossRefPubMedGoogle Scholar
  44. 44.
    Raimondi S, Botteri E, Munzone E, Cipolla C, Rotmensz N, DeCensi A, et al. Use of beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers and breast cancer survival: systematic review and meta-analysis. Int J Cancer. 2016;139(1):212–9.CrossRefPubMedGoogle Scholar
  45. 45.
    van der Westhuizen ET, Breton B, Christopoulos A, Bouvier M. Quantification of ligand bias for clinically relevant beta2-adrenergic receptor ligands: implications for drug taxonomy. Mol Pharmacol. 2014;85(3):492–509.CrossRefPubMedGoogle Scholar
  46. 46.
    Vrydag W, Michel MC. Tools to study beta3-adrenoceptors. Naunyn Schmiedeberg's Arch Pharmacol. 2007;374(5–6):385–98.CrossRefGoogle Scholar
  47. 47.
    Vandewalle B, Revillion F, Lefebvre J. Functional beta-adrenergic receptors in breast cancer cells. J Cancer ResClinOncol. 1990;116(3):303–6.Google Scholar
  48. 48.
    Badino GR, Novelli A, Girardi C, Di Carlo F. Evidence for functional beta-adrenoceptor subtypes in CG-5 breast cancer cell. Pharmacol Res. 1996;33(4–5):255–60.PubMedGoogle Scholar
  49. 49.
    Shamir ER, Ewald AJ. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol. 2014;15(10):647–64.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Debnath J, Brugge JS. Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer. 2005;5(9):675–88.CrossRefPubMedGoogle Scholar
  51. 51.
    Nedvetsky PI, Kwon SH, Debnath J, Mostov KE. Cyclic AMP regulates formation of mammary epithelial acini in vitro. Mol Biol Cell. 2012;23(15):2973–81.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Russo J, Hu YF, Yang X, Russo IH. Developmental, cellular, and molecular basis of human breast cancer. J Natl Cancer Inst Monogr. 2000;27:17–37.CrossRefGoogle Scholar
  53. 53.
    Rajkumar L, Guzman RC, Yang J, Thordarson G, Talamantes F, Nandi S. Short-term exposure to pregnancy levels of estrogen prevents mammary carcinogenesis. Proc Natl Acad Sci U S A. 2001;98(20):11755–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hermes GL, Delgado B, Tretiakova M, Cavigelli SA, Krausz T, Conzen SD, et al. Social isolation dysregulates endocrine and behavioral stress while increasing malignant burden of spontaneous mammary tumors. Proc Natl Acad Sci U S A. 2009;106(52):22393–8.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Mallepell S, Krust A, Chambon P, Brisken C. Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci U S A. 2006;103(7):2196–201.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Brisken C, Park S, Vass T, Lydon JP, O’Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A. 1998;95(9):5076–81.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hurley MM, Tetradis S, Huang YF, Hock J, Kream BE, Raisz LG, et al. Parathyroid hormone regulates the expression of fibroblast growth factor-2 mRNA and fibroblast growth factor receptor mRNA in osteoblastic cells. J Bone Miner Res. 1999;14(5):776–83.CrossRefPubMedGoogle Scholar
  58. 58.
    Rajakumar RA, Quinn CO. Parathyroid hormone induction of rat interstitial collagenase mRNA in osteosarcoma cells is mediated through an AP-1-binding site. Mol Endocrinol. 1996;10(7):867–78.PubMedGoogle Scholar
  59. 59.
    Marchese S, Silva E. Disruption of 3D MCF-12A breast cell cultures by estrogens--an in vitro model for ER-mediated changes indicative of hormonal carcinogenesis. PLoS One. 2012;7(10):e45767.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Yu M, Lin G, Arshadi N, Kalatskaya I, Xue B, Haider S, et al. Expression profiling during mammary epithelial cell three-dimensional morphogenesis identifies PTPRO as a novel regulator of morphogenesis and ErbB2-mediated transformation. Mol Cell Biol. 2012;32(19):3913–24.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Inman JL, Bissell MJ. Apical polarity in three-dimensional culture systems: where to now? J Biol. 2010;9(1):2.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Sternlicht MD, Kouros-Mehr H, Lu P, Werb Z. Hormonal and local control of mammary branching morphogenesis. Differentiation. 2006;74(7):365–81.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Lucía Gargiulo
    • 1
  • María May
    • 1
  • Ezequiel M. Rivero
    • 1
  • Sabrina Copsel
    • 1
    • 2
  • Caroline Lamb
    • 1
  • John Lydon
    • 3
  • Carlos Davio
    • 2
  • Claudia Lanari
    • 1
  • Isabel A. Lüthy
    • 1
  • Ariana Bruzzone
    • 4
  1. 1.Instituto de Biología y Medicina Experimental-CONICETBuenos AiresArgentina
  2. 2.Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Department of Molecular & Cellular BiologyBaylor College of MedicineHoustonUSA
  4. 4.Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB)CONICET-Universidad Nacional del SurBahía BlancaArgentina

Personalised recommendations