Lipid Transport in the Lactating Mammary Gland

  • James L. McManaman


Mammalian cells depend on phospholipid (PL) and fatty acid (FA) transport to maintain membrane structure and organization, and to fuel and regulate cellular functions. In mammary glands of lactating animals, copious milk secretion, including large quantities of lipid in some species, requires adaptation and integration of PL and FA synthesis and transport processes to meet secretion demands. At present few details exist about how these processes are regulated within the mammary gland. However, recent advances in our understanding of the structural and molecular biology of membrane systems and cellular lipid trafficking provide insights into the mechanisms underlying the regulation and integration of PL and FA transport processes the lactating mammary gland. This review discusses the PL and FA transport processes required to maintain the structural integrity and organization of the mammary gland and support its secretory functions within the context of current molecular and cellular models of their regulation.


Biosynthesis Lactation Lipids Mammary gland Membranes Transport mechanisms 



ATP-binding cassette


Acyl-coA synthetase


Apolipoprotein A1


Adenosine triphosphate


Choline-ethanolamine phosphotransferase


Common endosome recycling


Ceramide transport protein


Cytoplasmic lipid droplets


CDP-choline phosphotransferase




Fatty acid


Fatty acid translocase


Fatty acid transport protein


Endoplasmic reticulum


Long-chain fatty acids


Lipoprotein lipase


Lipid transport proteins


Mitochondrial associated membranes


Milk fat globule






Phosphatidylethanolamine N-methyltransferase








Phosphotidyserine synthase 1


Phosphotidyserine synthase 2






Secretory vesicle



Supported by National Institutes of Health grants 5R01-HD045962, 1R01-HD075285 and P01-HD38129.


  1. 1.
    Federovitch CM et al. The dynamic ER: experimental approaches and current questions. Curr Opin Cell Biol. 2005;17:409–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Coleman JA et al. Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport. Biochim Biophys Acta. 2013;1831:555–74.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Anderson SM et al. Key stages in mammary gland development. Secretory activation in the mammary gland: it’s not just about milk protein synthesis! Breast Cancer Res. 2007;9:204.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Mashek DG et al. Long-chain acyl-CoA synthetases and fatty acid channeling. Futur Lipidol. 2007;2:465–76.CrossRefGoogle Scholar
  5. 5.
    Ikonen E, Simons K. Protein and lipid sorting from the trans-Golgi network to the plasma membrane in polarized cells. Semin Cell Dev Biol. 1998;9:503–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Hollmann KH. Cytology and fine structure of the mammary gland. In: Larson BL, Smith VR, editors. Lactation. New York: Academic; 1974. p. 3–95.Google Scholar
  7. 7.
    Wooding FBP. Comparative mammary fine structure. In: Peaker M, editor. Comparative aspects of lactation. London: Academic; 1977. p. 1–41.Google Scholar
  8. 8.
    Clermont Y et al. Structure of the Golgi apparatus in stimulated and nonstimulated acinar cells of mammary glands of the rat. Anat Rec. 1993;237:308–17.PubMedCrossRefGoogle Scholar
  9. 9.
    Ron D, Hampton RY. Membrane biogenesis and the unfolded protein response. J Cell Biol. 2004;167:23–5.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Mather IH, Keenan TW. Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia. 1998;3:259–73.PubMedCrossRefGoogle Scholar
  11. 11.
    McManaman JL et al. Molecular determinants of milk lipid secretion. J Mammary Gland Biol Neoplasia. 2007;12:259–68.PubMedCrossRefGoogle Scholar
  12. 12.
    Folsch H et al. Taking the scenic route: biosynthetic traffic to the plasma membrane in polarized epithelial cells. Traffic. 2009;10:972–81.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Monks J, McManaman JL. Secretion and fluid transport mechanisms in the mammary gland. In: Zibadi S et al., editors. Handbook of dietary and nutritional aspects of human breast milk. Wageningen: Wageningen Academic Publishers; 2013. p. 35–56.CrossRefGoogle Scholar
  14. 14.
    Holthuis JC, Levine TP. Lipid traffic: floppy drives and a superhighway. Nat Rev Mol Cell Biol. 2005;6:209–20.PubMedCrossRefGoogle Scholar
  15. 15.
    McManaman JL. Milk lipid secretion: recent biomolecular aspects. Biomol Concepts. 2012;3:581–91.PubMedCentralCrossRefGoogle Scholar
  16. 16.
    van Meer G et al. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112–24.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Jelsema CL, Morre DJ. Distribution of phospholipid biosynthetic enzymes among cell components of rat liver. J Biol Chem. 1978;253:7960–71.PubMedGoogle Scholar
  18. 18.
    Henneberry AL et al. The major sites of cellular phospholipid synthesis and molecular determinants of Fatty Acid and lipid head group specificity. Mol Biol Cell. 2002;13:3148–61.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Vance JE. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res. 2008;49:1377–87.PubMedCrossRefGoogle Scholar
  20. 20.
    Fagone P, Jackowski S. Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res. 2009;50(Suppl):S311–316.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Vance DE. Physiological roles of phosphatidylethanolamine N-methyltransferase. Biochim Biophys Acta. 2013;1831:626–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Osman C et al. Making heads or tails of phospholipids in mitochondria. J Cell Biol. 2011;192:7–16.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Yang EK et al. Rat and human mammary tissue can synthesize choline moiety via the methylation of phosphatidylethanolamine. Biochem J. 1988;256:821–8.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Vance DE, de Kruijff B. The possible functional significance of phosphatidylethanolamine methylation. Nature. 1980;288:277–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Zborowski J et al. Phosphatidylserine decarboxylase is located on the external side of the inner mitochondrial membrane. FEBS Lett. 1983;157:179–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Vance JE, Tasseva G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta. 2013;1831:543–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Voelker DR. Organelle biogenesis and intracellular lipid transport in eukaryotes. Microbiol Rev. 1991;55:543–60.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Vance JE. Newly made phosphatidylserine and phosphatidylethanolamine are preferentially translocated between rat liver mitochondria and endoplasmic reticulum. J Biol Chem. 1991;266:89–97.PubMedGoogle Scholar
  29. 29.
    Sleight RG, Pagano RE. Rapid appearance of newly synthesized phosphatidylethanolamine at the plasma membrane. J Biol Chem. 1983;258:9050–8.PubMedGoogle Scholar
  30. 30.
    Vance JE. Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem. 1990;265:7248–56.PubMedGoogle Scholar
  31. 31.
    Agranoff BW et al. The enzymatic synthesis of inositol phosphatide. J Biol Chem. 1958;233:1077–83.PubMedGoogle Scholar
  32. 32.
    Bell RM et al. Lipid topogenesis. J Lipid Res. 1981;22:391–403.PubMedGoogle Scholar
  33. 33.
    Cockcroft S, Carvou N. Biochemical and biological functions of class I phosphatidylinositol transfer proteins. Biochim Biophys Acta. 2007;1771:677–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim YJ et al. A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev Cell. 2011;21:813–24.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Hanada K et al. CERT and intracellular trafficking of ceramide. Biochim Biophys Acta. 2007;1771:644–53.PubMedCrossRefGoogle Scholar
  36. 36.
    Hanada K. Discovery of the molecular machinery CERT for endoplasmic reticulum-to-Golgi trafficking of ceramide. Mol Cell Biochem. 2006;286:23–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Daleke DL. Phospholipid flippases. J Biol Chem. 2007;282:821–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Lagace TA, Ridgway ND. The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. Biochim Biophys Acta. 2013;1833:2499–510.PubMedCrossRefGoogle Scholar
  39. 39.
    Pilarska M et al. Properties and topology of enzymes methylating phosphatidylethanolamine to phosphatidylcholine in sarcoplasmic reticulum. Int J Biochem. 1987;19:705–11.PubMedCrossRefGoogle Scholar
  40. 40.
    Bishop WR, Bell RM. Assembly of the endoplasmic reticulum phospholipid bilayer: the phosphatidylcholine transporter. Cell. 1985;42:51–60.PubMedCrossRefGoogle Scholar
  41. 41.
    Kaplan MR, Simoni RD. Intracellular transport of phosphatidylcholine to the plasma membrane. J Cell Biol. 1985;101:441–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Muthusamy BP et al. Linking phospholipid flippases to vesicle-mediated protein transport. Biochim Biophys Acta. 2009;1791:612–9.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Seigneuret M, Devaux PF. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Natl Acad Sci U S A. 1984;81:3751–5.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Devaux PF, Morris R. Transmembrane asymmetry and lateral domains in biological membranes. Traffic. 2004;5:241–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Yabas M et al. ATP11C is critical for the internalization of phosphatidylserine and differentiation of B lymphocytes. Nat Immunol. 2011;12:441–9.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Pomorski T et al. Tracking down lipid flippases and their biological functions. J Cell Sci. 2004;117:805–13.PubMedCrossRefGoogle Scholar
  47. 47.
    Gottesman MM et al. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.PubMedCrossRefGoogle Scholar
  48. 48.
    Mani O et al. Expression, localization, and functional model of cholesterol transporters in lactating and nonlactating mammary tissues of murine, bovine, and human origin. Am J Physiol Regul Integr Comp Physiol. 2010;299:R642–654.PubMedCrossRefGoogle Scholar
  49. 49.
    Mani O et al. Identification of ABCA1 and ABCG1 in milk fat globules and mammary cells–implications for milk cholesterol secretion. J Dairy Sci. 2011;94:1265–76.PubMedCrossRefGoogle Scholar
  50. 50.
    Ontsouka EC et al. Characteristics and functional relevance of apolipoprotein-A1 and cholesterol binding in mammary gland tissues and epithelial cells. PLoS One. 2013;8:e70407.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    D’Alessandro A et al. Human milk proteins: an interactomics and updated functional overview. J Proteome Res. 2010;9:3339–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Hunziker W, Kraehenbuhl JP. Epithelial transcytosis of immunoglobulins. J Mammary Gland Biol Neoplasia. 1998;3:287–302.PubMedCrossRefGoogle Scholar
  53. 53.
    Monks J, Neville MC. Albumin transcytosis across the epithelium of the lactating mouse mammary gland. J Physiol. 2004;560:267–80.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol. 2009;10:597–608.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Golachowska MR et al. Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity. Trends Cell Biol. 2010;20:618–26.PubMedCrossRefGoogle Scholar
  56. 56.
    Welsch U et al. Internalization of ferritin-concanavalin A by the lactating mammary cell in vivo. Cell Tissue Res. 1984;235:433–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Monks J et al. A lipoprotein-containing particle is transferred from the serum across the mammary epithelium into the milk of lactating mice. J Lipid Res. 2001;42:686–96.PubMedGoogle Scholar
  58. 58.
    Mousley CJ et al. The Sec14-superfamily and the regulatory interface between phospholipid metabolism and membrane trafficking. Biochim Biophys Acta. 2007;1771:727–36.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Wirtz KW et al. Properties and possible function of phosphatidylinositol-transfer proteins. Biotechnol Appl Biochem. 1990;12:485–8.PubMedGoogle Scholar
  60. 60.
    de Vries KJ et al. An isoform of the phosphatidylinositol-transfer protein transfers sphingomyelin and is associated with the Golgi system. Biochem J. 1995;310(Pt 2):643–9.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Dickeson SK et al. Isolation and sequence of cDNA clones encoding rat phosphatidylinositol transfer protein. J Biol Chem. 1989;264:16557–64.PubMedGoogle Scholar
  62. 62.
    Hanada K. Intracellular trafficking of ceramide by ceramide transfer protein. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86:426–37.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Schwertfeger KL et al. Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res. 2003;44:1100–12.PubMedCrossRefGoogle Scholar
  64. 64.
    Tauchi-Sato K et al. The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J Biol Chem. 2002;277:44507–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Wu CC et al. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis. 2000;21:3470–82.PubMedCrossRefGoogle Scholar
  66. 66.
    McManaman JL et al. Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J Mammary Gland Biol Neoplasia. 2006;11:249–68.PubMedCrossRefGoogle Scholar
  67. 67.
    Walther TC, Farese Jr RV. The life of lipid droplets. Biochim Biophys Acta. 2009;1791:459–66.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Stein O, Stein Y. Lipid synthesis, intracellular transport, and secretion. II. Electron microscopic radioautographic study of the mouse lactating mammary gland. J Cell Biol. 1967;34:251–63.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Bionaz M, Loor JJ. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J Nutr. 2008;138:1019–24.PubMedGoogle Scholar
  70. 70.
    Han LQ et al. mRNA abundance and expression of SLC27A, ACC, SCD, FADS, LPIN, INSIG, and PPARGC1 gene isoforms in mouse mammary glands during the lactation cycle. Genet Mol Res. 2010;9:1250–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Bionaz M, Loor JJ. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics. 2008;9:366.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Neville MC, Picciano MF. Regulation of milk lipid secretion and composition. Annu Rev Nutr. 1997;17:159–83.PubMedCrossRefGoogle Scholar
  73. 73.
    Goldberg IJ et al. Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways. J Lipid Res. 2009;50(Suppl):S86–90.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Hamilton JA. New insights into the roles of proteins and lipids in membrane transport of fatty acids. Prostaglandins Leukot Essent Fat Acids. 2007;77:355–61.CrossRefGoogle Scholar
  75. 75.
    Su X, Abumrad NA. Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab. 2009;20:72–7.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Schaffer JE. Fatty acid transport: the roads taken. Am J Physiol Endocrinol Metab. 2002;282:E239–246.PubMedGoogle Scholar
  77. 77.
    Abumrad NA et al. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem. 1993;268:17665–8.PubMedGoogle Scholar
  78. 78.
    Acton SL et al. Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem. 1994;269:21003–9.PubMedGoogle Scholar
  79. 79.
    Febbraio M, Silverstein RL. CD36: implications in cardiovascular disease. Int J Biochem Cell Biol. 2007;39:2012–30.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Greenwalt DE, Mather IH. Characterization of an apically derived epithelial membrane glycoprotein from bovine milk, which is expressed in capillary endothelia in diverse tissues. J Cell Biol. 1985;100:397–408.PubMedCrossRefGoogle Scholar
  81. 81.
    Greenwalt DE et al. PAS IV, an integral membrane protein of mammary epithelial cells, is related to platelet and endothelial cell DC36 (GPIV). Biochemistry. 1990;29:7054–9.PubMedCrossRefGoogle Scholar
  82. 82.
    DeFilippis RA et al. CD36 repression activates a multicellular stromal program shared by high mammographic density and tumor tissues. Cancer Discov. 2012;2:826–39.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Watkins PA. Very-long-chain acyl-CoA synthetases. J Biol Chem. 2008;283:1773–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Soupene E, Kuypers FA. Mammalian long-chain acyl-CoA synthetases. Exp Biol Med (Maywood). 2008;233:507–21.CrossRefGoogle Scholar
  85. 85.
    Stahl A. A current review of fatty acid transport proteins (SLC27). Pflugers Arch. 2004;447:722–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Palmer CA et al. Transgenic mice expressing recombinant human protein C exhibit defects in lactation and impaired mammary gland development. Transgenic Res. 2003;12:283–92.PubMedCrossRefGoogle Scholar
  87. 87.
    McManaman JL et al. Regulation of milk lipid formation and secretion in the mouse mammary gland. Adv Exp Med Biol. 2004;554:263–79.PubMedCrossRefGoogle Scholar
  88. 88.
    Welte MA. Fat on the move: intracellular motion of lipid droplets. Biochem Soc Trans. 2009;37:991–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Orlicky DJ et al. Dynamics and molecular determinants of cytoplasmic lipid droplet clustering and dispersion. PLoS One. 2013;8:e66837.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Patton S et al. The supression of milk fat globule secretion by clochicine: an effect coupled to inhibition of exocytosis. Biochim Biophys Acta. 1977;499:404–10.PubMedCrossRefGoogle Scholar
  91. 91.
    Lemay DG et al. Gene regulatory networks in lactation: identification of global principles using bioinformatics. BMC Syst Biol. 2007;1:56.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Bartz R et al. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res. 2007;48:837–47.PubMedCrossRefGoogle Scholar
  93. 93.
    Contarini G, Povolo M. Phospholipids in milk fat: composition, biological and technological significance, and analytical strategies. Int J Mol Sci. 2013;14:2808–31.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of Basic Reproductive SciencesUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations