Journal of Mammary Gland Biology and Neoplasia

, Volume 15, Issue 4, pp 399–409 | Cite as

Mesenchymal Stem Cells in the Pathogenesis and Therapy of Breast Cancer



Mesenchymal stem cells (MSCs) are a heterogeneous mix of stromal stem cells that can give rise to cells of mesodermal lineages, namely adipocytes, osteocytes and chondrocytes. They can home to sites of injury where they promote the repair and regeneration of damaged tissues. MSCs also home to sites of tumorigenesis, and as such, are utilized as efficient cellular vehicles for the delivery of anti-neoplastic therapeutics. Recently, MSCs within the tumor microenvironment have been shown to contribute to the desmoplastic reaction and to facilitate tumor formation and progression, sparking renewed interest in their pro-tumorigenic attributes and their roles as tumor stromal cells. Here, we describe the evidence linking MSCs to inflammatory processes and breast cancer development, and discuss their newly discovered physiological roles in the context of the tumor microenvironment.


Bone marrow Mesenchymal stem cells MSC Breast cancer Stroma Recruitment Gene therapy Tumor progression Metastasis 



Colony forming unit-fibroblastic


Mesenchymal stem cell


Graft-versus-host disease




Cluster of differentiation


Human leukocyte antigen-DR


Major histocompatibility complex


NK-2 type homeodomain gene


Octamer binding transcription factor 4


Sex determining region Y-box 2


Tumor growth factor-β


Tumor growth factor-β receptor 1


Mothers against decapentaplegic homolog 3


Forkhead box p3


Inflammatory bowel disease


Matrix metalloproteinase


Monocyte-derived protein 1


Hepatoma-derived growth factor


Urokinase plasminogen activator


Urokinase plasminogen activator receptor


Histone deacetylase


Fibroblast growth factor 2


Vascular endothelial growth factor




Signal transducer and activator of transcription 3


C-C motif ligand 5


T helper 2


Stromal-cell derived factor 1


Conditionally replicating oncolytic adenoviruses


Tumor necrosis factor-related apoptosis-inducing ligand


Herpes simplex virus-thymidine kinase


Cytosine deaminase





Our research is supported by start-up funds from the Beth Israel Deaconess Medical Center, T32 Institutional NRSA Research Training Grants, and the Sydney Kimmel Cancer Research Foundation. AEK is a 2010 Kimmel Scholar.


  1. 1.
    Heidland A, Klassen A, Sebekova K, Bahner U. Beginning of modern concept of inflammation: the work of Friedrich Daniel von Recklinghausen and Julius Friedrich Cohnheim. J Nephrol. 2009;22 Suppl 14:71–9.PubMedGoogle Scholar
  2. 2.
    Friedenstein A, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol. 1974;2:83–92.PubMedGoogle Scholar
  3. 3.
    Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.CrossRefPubMedGoogle Scholar
  4. 4.
    Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Pittenger M, Mackay A, Beck S, Jaiswal R, Douglas R, Mosca J, et al. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–7.Google Scholar
  6. 6.
    Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7(6):259–64.CrossRefPubMedGoogle Scholar
  7. 7.
    Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2(4):313–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Bruder S, Kurth A, Shea M, Hayes W, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res. 1998;16(2):155–62.CrossRefPubMedGoogle Scholar
  9. 9.
    Krampera M, Pizzolo G, Aprili G, Franchini M. Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone. 2006;39(4):678–83.CrossRefPubMedGoogle Scholar
  10. 10.
    Korbling M, Estrov Z. Adult stem cells for tissue repair—a new therapeutic concept? N Engl J Med. 2003;349(6):570–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Vianello F, Dazzi F. Mesenchymal stem cells for graft-versus-host disease: a double edged sword? Leukemia 22(3):463-465.Google Scholar
  12. 12.
    Wang L, Zhao R. Mesenchymal stem cells targeting the GVHD. Sci China C Life Sci. 2009;52(7):603–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther. 2006;14(6):840–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang M, Mal N, Kiedrowski M, Chacko M, Askari AT, Popovic ZB, et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 2007;21(12):3197–207.CrossRefPubMedGoogle Scholar
  15. 15.
    Zisa D, Shabbir A, Suzuki G, Lee T. Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair. Biochem Biophys Res Commun. 2009;390(3):834–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Shabbir A, Zisa D, Lin H, Mastri M, Roloff G, Suzuki G, et al. Activation of host tissue trophic factors through JAK/STAT3 signaling: A mechanism of mesenchymal stem cell-mediated cardiac repair. Am J Physiol Heart Circ Physiol. 2010;299(5):H1428–38.Google Scholar
  17. 17.
    Xin H, Li Y, Shen LH, Liu X, Wang X, Zhang J, et al. Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS One 5(2):e9027.Google Scholar
  18. 18.
    Silva FH, Nardi NB. From leading role to the backstage: mesenchymal stem cells as packaging cell lines for in situ production of viral vectors. Med Hypotheses. 2006;67(4):922–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213(2):341–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Klingemann H, Matzilevich D, Marchand J. Mesenchymal stem cells—sources and clinical applications. Transfus Med Hemother. 2008;35(4):272–7.CrossRefGoogle Scholar
  21. 21.
    Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):206–16.CrossRefPubMedGoogle Scholar
  22. 22.
    Mansilla E, Marin GH, Drago H, Sturla F, Salas E, Gardiner C, et al. Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transplant Proc. 2006;38(3):967–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells. 2007;25(11):2896–902.CrossRefPubMedGoogle Scholar
  24. 24.
    Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2002;62(13):3603–8.PubMedGoogle Scholar
  25. 25.
    Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 2004;96(21):1593–603.CrossRefPubMedGoogle Scholar
  26. 26.
    Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 2005;65(8):3307–18.PubMedGoogle Scholar
  27. 27.
    Yong RL, Shinojima N, Fueyo J, Gumin J, Vecil GG, Marini FC, et al. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res. 2009;69(23):8932–40.CrossRefPubMedGoogle Scholar
  28. 28.
    Dwyer R, Khan S, Barry F, O’Brien T, Kerin M. Advances in mesenchymal stem cell-mediated gene therapy for cancer. Stem Cell Res Ther. 2010;1(3):25.CrossRefPubMedGoogle Scholar
  29. 29.
    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63.CrossRefPubMedGoogle Scholar
  30. 30.
    Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells. 2009;27(10):2614–23.CrossRefPubMedGoogle Scholar
  31. 31.
    Bernardo ME, Locatelli F, Fibbe WE. Mesenchymal stromal cells. Ann NY Acad Sci. 2009;1176:101–17.CrossRefPubMedGoogle Scholar
  32. 32.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. In: Cytotherapy: Taylor & Francis Ltd; 2006, p 315–317.Google Scholar
  33. 33.
    Roobrouck VD, Ulloa-Montoya F, Verfaillie CM. Self-renewal and differentiation capacity of young and aged stem cells. Exp Cell Res. 2008;314(9):1937–44.CrossRefPubMedGoogle Scholar
  34. 34.
    Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, et al. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res. 1997;12(9):1335–47.CrossRefPubMedGoogle Scholar
  35. 35.
    Spees JL, Olson SD, Ylostalo J, Lynch PJ, Smith J, Perry A, et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA. 2003;100(5):2397–402.CrossRefPubMedGoogle Scholar
  36. 36.
    Prockop DJ, Gregory CA, Spees JL. One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci USA. 2003;100 Suppl 1:11917–23.CrossRefPubMedGoogle Scholar
  37. 37.
    Shahdadfar A, Frønsdal K, Haug T, Reinholt FP, Brinchmann JE. In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells. 2005;23(9):1357–66.CrossRefPubMedGoogle Scholar
  38. 38.
    Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M. Cell culture medium composition and translational adult bone marrow-derived stem cell research. Stem Cells. 2006;24(5):1409–10.CrossRefPubMedGoogle Scholar
  39. 39.
    Wagner W, Ho A. Mesenchymal stem cell preparations—comparing apples and oranges. Stem Cell Rev Rep. 2007;3(4):239–48.CrossRefGoogle Scholar
  40. 40.
    Lodie TA, Blickarz CE, Devarakonda TJ, He C, Dash AB, Clarke J, et al. Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Eng. 2002;8(5):739–51.CrossRefPubMedGoogle Scholar
  41. 41.
    Sorrentino A, Ferracin M, Castelli G, Biffoni M, Tomaselli G, Baiocchi M, et al. Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp Hematol. 2008;36(8):1035–46.CrossRefPubMedGoogle Scholar
  42. 42.
    Poloni A, Maurizi G, Rosini V, Mondini E, Mancini S, Discepoli G, et al. Selection of CD271(+) cells and human AB serum allows a large expansion of mesenchymal stromal cells from human bone marrow. Cytotherapy. 2009;11(2):153–62.CrossRefPubMedGoogle Scholar
  43. 43.
    Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem. 2003;89(6):1235–49.CrossRefPubMedGoogle Scholar
  44. 44.
    Greco SJ, Liu K, Rameshwar P. Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells. 2007;25(12):3143–54.CrossRefPubMedGoogle Scholar
  45. 45.
    Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, et al. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev. 2009;5(4):378–86.CrossRefPubMedGoogle Scholar
  46. 46.
    Baxter M, Wynn R, Jowitt S, Wraith J, Fairbairn L, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells. 2004;22(5):675–82.CrossRefPubMedGoogle Scholar
  47. 47.
    Bonab M, Alimoghaddam K, Talebian F, Ghaffari S, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 2006;7(1):14.CrossRefPubMedGoogle Scholar
  48. 48.
    Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE. 2008;3(5):e2213.CrossRefPubMedGoogle Scholar
  49. 49.
    Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, et al. Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation. Circ Res 2010;107(7):913–22 CIRCRESAHA.110.222703.Google Scholar
  50. 50.
    Sorrell JM, Caplan AI. Topical delivery of mesenchymal stem cells and their function in wounds. Stem Cell Res Ther. 1(4):30.Google Scholar
  51. 51.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838–43.CrossRefPubMedGoogle Scholar
  52. 52.
    Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105(7):2821–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Sioud M, Mobergslien A, Boudabous A, Fløisand Y. Evidence for the involvement of galectin-3 in mesenchymal stem cell suppression of allogeneic T-cell proliferation. Scand J Immunol. 2010;71(4):267–74.CrossRefPubMedGoogle Scholar
  54. 54.
    Deng W, Han Q, Liao L, You S, Deng H, Zhao RC. Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol. 2005;24(7):458–63.CrossRefPubMedGoogle Scholar
  55. 55.
    Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107(1):367–72.CrossRefPubMedGoogle Scholar
  56. 56.
    Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, et al. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells. 2007;25(8):2025–32.CrossRefPubMedGoogle Scholar
  57. 57.
    Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105(10):4120–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation. 2007;83(1):71–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Di Ianni M, Del Papa B, De Ioanni M, Moretti L, Bonifacio E, Cecchini D, et al. Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol. 2008;36(3):309–18.CrossRefPubMedGoogle Scholar
  60. 60.
    Crop M, Baan CC, Korevaar SS, IJzermans JN, Weimar W, Hoogduijn MJ. Human adipose tissue-derived mesenchymal stem cells induce explosive T-cell proliferation. Stem Cells and Development 2010; 0(ja).Google Scholar
  61. 61.
    Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099–106.CrossRefPubMedGoogle Scholar
  62. 62.
    Urdzíková L, Jendelová P, Glogarová K, Burian M, Hájek M, Syková E. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotrauma. 2006;23(9):1379–91.CrossRefPubMedGoogle Scholar
  63. 63.
    Syková E, Jendelová P, Urdzíková L, Lesný P, Hejčl A. Bone marrow stem cells and polymer hydrogels—two strategies for spinal cord injury repair. Cell Mol Neurobiol. 2006;26(7):1111–27.CrossRefGoogle Scholar
  64. 64.
    Zanone MM, Favaro E, Miceli I, Grassi G, Camussi E, Caorsi C, et al. Human mesenchymal stem cells modulate cellular immune response to islet antigen glutamic acid decarboxylase in Type 1 diabetes. J Clin Endocrinol Metab. 2010;95(8):3788–97.CrossRefPubMedGoogle Scholar
  65. 65.
    Chanda D, Kumar S, Ponnazhagan S. Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in diseases of the skeleton. J Cell Biochem. 2010;111(2):249–57.Google Scholar
  66. 66.
    Joo S-Y, Cho K-A, Jung Y-J, Kim H-S, Park S-Y, Choi Y-B, et al. Mesenchymal stromal cells inhibit graft-versus-host disease of mice in a dose-dependent manner. Cytotherapy. 2010;12(3):361–70.CrossRefPubMedGoogle Scholar
  67. 67.
    González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum. 2009;60(4):1006–19.CrossRefPubMedGoogle Scholar
  68. 68.
    Gonzalez-Rey E, Anderson P, González MA, Rico L, Büscher D, Delgado M. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut. 2009;58(7):929–39.CrossRefPubMedGoogle Scholar
  69. 69.
    González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009;136(3):978–89.CrossRefPubMedGoogle Scholar
  70. 70.
    Constantin G, Marconi S, Rossi B, Angiari S, Calderan L, Anghileri E, et al. Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells. 2009;27(10):2624–35.CrossRefPubMedGoogle Scholar
  71. 71.
    Si Y-L, Zhao Y-L, Hao H-J, Fu X-B, Han W-D. MSCs: Biological characteristics, clinical applications and their outstanding concerns. Ageing Research Reviews 2010; In Press, Corrected Proof.Google Scholar
  72. 72.
    Flier JS, Underhill LH, Dvorak HF. Tumors: wounds that do not heal. N Engl J Med. 1986;315(26):1650–9.CrossRefGoogle Scholar
  73. 73.
    Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med. 2006;203(5):1235–47.CrossRefPubMedGoogle Scholar
  74. 74.
    Duan X, Guan H, Cao Y, Kleinerman ES. Murine bone marrow-derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors. Cancer. 2009;115(1):13–22.CrossRefPubMedGoogle Scholar
  75. 75.
    Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M, et al. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells. 2007;25(2):520–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther. 2006;5(3):755–66.CrossRefPubMedGoogle Scholar
  77. 77.
    Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL, et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci. 2009;106(10):3806–11.CrossRefPubMedGoogle Scholar
  78. 78.
    Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM, et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res. 2007;13(17):5020–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Lin SY, Yang J, Everett AD, Clevenger CV, Koneru M, Mishra PJ, et al. The isolation of novel mesenchymal stromal cell chemotactic factors from the conditioned medium of tumor cells. Exp Cell Res. 2008;314(17):3107–17.CrossRefPubMedGoogle Scholar
  80. 80.
    Gutova M, Najbauer J, Frank RT, Kendall SE, Gevorgyan A, Metz MZ, et al. Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells. 2008;26(6):1406–13.CrossRefPubMedGoogle Scholar
  81. 81.
    Pulukuri SMK, Gorantla B, Dasari VR, Gondi CS, Rao JS. Epigenetic upregulation of urokinase plasminogen activator promotes the tropism of mesenchymal stem cells for tumor cells. Mol Cancer Res. 2010;8(8):1074–83.CrossRefPubMedGoogle Scholar
  82. 82.
    Ritter E, Perry A, Yu J, Wang T, Tang L, Bieberich E. Breast cancer cell-derived fibroblast growth factor 2 and vascular endothelial growth factor are chemoattractants for bone marrow stromal stem cells. Ann Surg. 2008;247(2):310–4.CrossRefPubMedGoogle Scholar
  83. 83.
    Rattigan Y, Hsu J-M, Mishra PJ, Glod J, Banerjee D. Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu. Exp Cell Res. 2010;316(20):3417–24.Google Scholar
  84. 84.
    Fox JM, Chamberlain G, Ashton BA, Middleton J. Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol. 2007;137(6):491–502.CrossRefPubMedGoogle Scholar
  85. 85.
    Rhodes L, Muir S, Elliott S, Guillot L, Antoon J, Penfornis P, et al. Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence. Breast Cancer Res Treat. 2009;121(2):293–300.CrossRefPubMedGoogle Scholar
  86. 86.
    Martin F, Dwyer R, Kelly J, Khan S, Murphy J, Curran C, et al. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat. 2010; 1–10.Google Scholar
  87. 87.
    Klopp AH, Lacerda L, Gupta A, Debeb BG, Solley T, Li L, et al. Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. PLoS ONE. 2010;5(8):e12180.CrossRefPubMedGoogle Scholar
  88. 88.
    Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28(33):2940–7.CrossRefPubMedGoogle Scholar
  89. 89.
    Dryden GW. Overview of stem cell therapy for Crohn’s disease. Expert Opin Biol Ther. 2009;9(7):841–7.CrossRefPubMedGoogle Scholar
  90. 90.
    Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003;102(10):3837–44.CrossRefPubMedGoogle Scholar
  91. 91.
    Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-{beta}. J Immunol. 2010;184(10):5885–94.CrossRefPubMedGoogle Scholar
  92. 92.
    Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE. 2009;4(4):e4992.CrossRefPubMedGoogle Scholar
  93. 93.
    Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 2008;68(11):4331–9.CrossRefPubMedGoogle Scholar
  94. 94.
    Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Cho M, et al. Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. Stem Cells. 2008;26(3):789–97.CrossRefPubMedGoogle Scholar
  95. 95.
    Chen X, Lin X, Zhao J, Shi W, Zhang H, Wang Y, et al. A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther. 2008;16(4):749–56.CrossRefPubMedGoogle Scholar
  96. 96.
    Stagg J, Lejeune L, Paquin A, Galipeau J. Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther. 2004;15(6):597–608.CrossRefPubMedGoogle Scholar
  97. 97.
    Stoff-Khalili MA, Rivera AA, Mathis JM, Banerjee NS, Moon AS, Hess A, et al. Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat. 2007;105(2):157–67.CrossRefPubMedGoogle Scholar
  98. 98.
    Mader EK, Maeyama Y, Lin Y, Butler GW, Russell HM, Galanis E, et al. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res. 2009;15(23):7246–55.CrossRefPubMedGoogle Scholar
  99. 99.
    Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, et al. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor—related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res. 2010;70(9):3718–29.CrossRefPubMedGoogle Scholar
  100. 100.
    Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res. 2009;69(10):4134–42.CrossRefPubMedGoogle Scholar
  101. 101.
    Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA. 2009;106(12):4822–7.CrossRefPubMedGoogle Scholar
  102. 102.
    Mohr A, Albarenque SM, Deedigan L, Yu R, Reidy M, Fulda S, et al. Targeting of XIAP combined with systemic mesenchymal stem cell-mediated delivery of sTRAIL inhibits metastatic growth of pancreatic carcinoma cells. Stem Cells 2010;28(11):2109–20.Google Scholar
  103. 103.
    Yang B, Wu X, Mao Y, Bao W, Gao L, Zhou P, et al. Dual-targeted antitumor effects against brainstem glioma by intravenous delivery of tumor necrosis factor-related, apoptosis-inducing, ligand-engineered human mesenchymal stem cells. Neurosurgery. 2009;65(3):610–24. discussion 624.CrossRefPubMedGoogle Scholar
  104. 104.
    Luetzkendorf J, Mueller LP, Mueller T, Caysa H, Nerger K, Schmoll HJ. Growth-inhibition of colorectal carcinoma by lentiviral TRAIL-transgenic human mesenchymal stem cells requires their substantial intratumoral presence. J Cell Mol Med. 2010;14(9):2292–304.Google Scholar
  105. 105.
    Szegezdi E, O’Reilly A, Davy Y, Vawda R, Taylor DL, Murphy M, et al. Stem cells are resistant to TRAIL receptor-mediated apoptosis. J Cell Mol Med. 2009;13(11–12):4409–14.CrossRefPubMedGoogle Scholar
  106. 106.
    Kucerova L, Matuskova M, Pastorakova A, Tyciakova S, Jakubikova J, Bohovic R, et al. Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J Gene Med. 2008;10(10):1071–82.CrossRefPubMedGoogle Scholar
  107. 107.
    Amano S, Li S, Gu C, Gao Y, Koizumi S, Yamamoto S, et al. Use of genetically engineered bone marrow-derived mesenchymal stem cells for glioma gene therapy. Int J Oncol. 2009;35(6):1265–70.PubMedGoogle Scholar
  108. 108.
    Matuskova M, Hlubinova K, Pastorakova A, Hunakova L, Altanerova V, Altaner C, et al. HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett. 2010;290(1):58–67.CrossRefPubMedGoogle Scholar
  109. 109.
    Muehlberg FL, Song YH, Krohn A, Pinilla SP, Droll LH, Leng X, et al. Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis. 2009;30(4):589–97.CrossRefPubMedGoogle Scholar
  110. 110.
    Zimmerlin L, Donnenberg AD, Rubin JP, Basse P, Landreneau RJ, Donnenberg VS. Regenerative therapy and cancer: in vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue Eng Part A; In Press, corrected Proof.Google Scholar
  111. 111.
    Ahmadian Kia N, Bahrami AR, Ebrahimi M, Matin MM, Neshati Z, Almohaddesin MR, et al. Comparative analysis of chemokine receptor’s expression in mesenchymal stem cells derived from human bone marrow and adipose tissue. J Mol Neurosci; In Press, corrected Proof.Google Scholar
  112. 112.
    Mosna F, Sensebe L, Krampera M. Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev. 19(10):1449–70.Google Scholar
  113. 113.
    Prockop DJ, Brenner M, Fibbe WE, Horwitz E, Le Blanc K, Phinney DG, et al. Defining the risks of mesenchymal stromal cell therapy. Cytotherapy. 2010;12(5):576–8.CrossRefPubMedGoogle Scholar
  114. 114.
    Fennema EM, Renard AJS, Leusink A, van Blitterswijk CA, de Boer J. The effect of bone marrow aspiration strategy on the yield and quality of human mesenchymal stem cells. Acta Orthop. 2009;80(5):618–21.CrossRefPubMedGoogle Scholar
  115. 115.
    Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem. 1999;75(3):424–36.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Pathology, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  2. 2.Department of Pathology, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA

Personalised recommendations