Skip to main content

Advertisement

Log in

The Role of Histone Modifications and Variants in Regulating Gene Expression in Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The role of epigenetic phenomena in cancer biology is increasingly being recognized. Here we focus on the mechanisms and enzymes involved in regulating histone methylation and acetylation, and the modulation of histone variant expression and deposition. Implications of these epigenetic marks for tumor development, progression and invasiveness are discussed with a particular emphasis on breast cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

estrogen receptor

PR:

progesterone receptor

HDAC:

histone deacetylase

HAT:

histone acetylase

PRMT:

protein arginine methyltransferase

KMT:

lysine methyltransferase

References

  1. Beatson GT. On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment, with illustratives cases. Lancet 2. 1896;104:162–5.

    Google Scholar 

  2. Frasor J, Danes JM, Komm B, et al. Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology. 2003;144(10):4562–74.

    PubMed  CAS  Google Scholar 

  3. Soulez M, Parker MG. Identification of novel oestrogen receptor target genes in human ZR75-1 breast cancer cells by expression profiling. J Mol Endocrinol. 2001;27(3):259–74.

    PubMed  CAS  Google Scholar 

  4. Jensen EV, Desombre ER, Hurst DJ, et al. Estrogen-receptor interactions in target tissues. Arch Anat Microsc Morphol Exp. 1967;56(3):547–69.

    PubMed  CAS  Google Scholar 

  5. Metivier R, Stark A, Flouriot G, et al. A dynamic structural model for estrogen receptor-alpha activation by ligands, emphasizing the role of interactions between distant A and E domains. Mol Cell. 2002;10(5):1019–32.

    PubMed  CAS  Google Scholar 

  6. Chu S, Fuller PJ. Identification of a splice variant of the rat estrogen receptor beta gene. Mol Cell Endocrinol. 1997;132(1–2):195–9.

    PubMed  CAS  Google Scholar 

  7. Ogawa S, Inoue S, Watanabe T, et al. Molecular cloning and characterization of human estrogen receptor betacx: a potential inhibitor ofestrogen action in human. Nucleic Acids Res. 1998;26(15):3505–12.

    PubMed  CAS  Google Scholar 

  8. Zhao C, Matthews J, Tujague M, et al. Estrogen receptor beta2 negatively regulates the transactivation of estrogen receptor alpha in human breast cancer cells. Cancer Res. 2007;67(8):3955–62.

    PubMed  CAS  Google Scholar 

  9. Allred DC, Harvey JM, Berardo M, et al. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11(2):155–68.

    PubMed  CAS  Google Scholar 

  10. Thompson EW, Paik S, Brunner N, et al. Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol. 1992;150(3):534–44.

    PubMed  CAS  Google Scholar 

  11. Ottaviano YL, Issa JP, Parl FF, et al. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 1994;54(10):2552–5.

    PubMed  CAS  Google Scholar 

  12. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100(7):3983–8.

    PubMed  CAS  Google Scholar 

  13. Dontu G, Al-Hajj M, Abdallah WM, et al. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003;36 Suppl 1:59–72.

    PubMed  CAS  Google Scholar 

  14. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3(12):895–902.

    PubMed  CAS  Google Scholar 

  15. Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

    PubMed  CAS  Google Scholar 

  16. Spillane JB, Henderson MA. Cancer stem cells: a review. ANZ J Surg. 2007;77(6):464–8.

    PubMed  Google Scholar 

  17. Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.

    PubMed  CAS  Google Scholar 

  18. Dontu G, El-Ashry D, Wicha MS. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab. 2004;15(5):193–7.

    PubMed  CAS  Google Scholar 

  19. Giamarchi C, Solanas M, Chailleux C, et al. Chromatin structure of the regulatory regions of pS2 and cathepsin D genes in hormone-dependent and -independent breast cancer cell lines. Oncogene. 1999;18(2):533–41.

    PubMed  CAS  Google Scholar 

  20. Touitou I, Vignon F, Cavailles V, et al. Hormonal regulation of cathepsin D following transfection of the estrogen or progesterone receptor into three sex steroid hormone resistant cancer cell lines. J Steroid Biochem Mol Biol. 1991;40(1–3):231–7.

    PubMed  CAS  Google Scholar 

  21. Yang X, Ferguson AT, Nass SJ, et al. Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res. 2000;60(24):6890–4.

    PubMed  CAS  Google Scholar 

  22. Fleury L, Gerus M, Lavigne AC, et al. Eliminating epigenetic barriers induces transient hormone-regulated gene expression in estrogen receptor negative breast cancer cells. Oncogene. 2008;27(29):4075–85.

    PubMed  CAS  Google Scholar 

  23. Yang X, Phillips DL, Ferguson AT, et al. Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res. 2001;61(19):7025–9.

    PubMed  CAS  Google Scholar 

  24. Lazennec G, Alcorn JL, Katzenellenbogen BS. Adenovirus-mediated delivery of a dominant negative estrogen receptor gene abrogates estrogen-stimulated gene expression and breast cancer cell proliferation. Mol Endocrinol. 1999;13(6):969–80.

    PubMed  CAS  Google Scholar 

  25. Metivier R, Penot G, Hubner MR, et al. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell. 2003;115(6):751–63.

    PubMed  CAS  Google Scholar 

  26. Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science. 1999;286(5439):481–6.

    PubMed  CAS  Google Scholar 

  27. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3(9):662–73.

    PubMed  CAS  Google Scholar 

  28. Luger K, Mader AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251–60.

    PubMed  CAS  Google Scholar 

  29. Davey CA, Sargent DF, Luger K, et al. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J Mol Biol. 2002;319(5):1097–113.

    PubMed  CAS  Google Scholar 

  30. Bhaumik SR, Smith E, Shilatifard A. Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol. 2007;14(11):1008–16.

    PubMed  CAS  Google Scholar 

  31. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.

    PubMed  CAS  Google Scholar 

  32. Henikoff S, Ahmad K. Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol. 2005;21:133–53.

    PubMed  CAS  Google Scholar 

  33. de la Cruz X, Lois S, Sanchez-Molina S, et al. Do protein motifs read the histone code? Bioessays. 2005;27(2):164–75.

    PubMed  Google Scholar 

  34. Ballestar E, Esteller M. Epigenetic gene regulation in cancer. Adv Genet. 2008;61:247–67.

    PubMed  Google Scholar 

  35. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7(1):21–33.

    PubMed  CAS  Google Scholar 

  36. Deltour S, Chopin V, Leprince D. Epigenetics and cancer. Med Sci (Paris). 2005;21(4):405–11.

    Google Scholar 

  37. Ptashne M. On the use of the word ‘epigenetic’. Curr Biol. 2007;17(7):R233–6.

    PubMed  CAS  Google Scholar 

  38. Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol Med. 2007;13(9):363–72.

    PubMed  CAS  Google Scholar 

  39. Lee DY, Hayes JJ, Pruss D, et al. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 1993;72(1):73–84.

    PubMed  CAS  Google Scholar 

  40. Hebbes TR, Thorne AW, Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin. Embo J. 1988;7(5):1395–402.

    PubMed  CAS  Google Scholar 

  41. Dhalluin C, Carlson JE, Zeng L, et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999;399(6735):491–6.

    PubMed  CAS  Google Scholar 

  42. Allis CD, Berger SL, Cote J, et al. New nomenclature for chromatin-modifying enzymes. Cell. 2007;131(4):633–6.

    PubMed  CAS  Google Scholar 

  43. Travers AA, Thompson JM. An introduction to the mechanics of DNA. Philos Transact A Math Phys Eng Sci. 2004;362(1820):1265–79.

    PubMed  CAS  Google Scholar 

  44. Khochbin S, Verdel A, Lemercier C, et al. Functional significance of histone deacetylase diversity. Curr Opin Genet Dev. 2001;11(2):162–6.

    PubMed  CAS  Google Scholar 

  45. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    PubMed  CAS  Google Scholar 

  46. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81–120.

    PubMed  CAS  Google Scholar 

  47. Martinez-Balbas MA, Bauer UM, Nielsen SJ, et al. Regulation of E2F1 activity by acetylation. Embo J. 2000;19(4):662–71.

    PubMed  CAS  Google Scholar 

  48. Iyer NG, Ozdag H, Caldas C. p300/CBP and cancer. Oncogene. 2004;23(24):4225–31.

    PubMed  CAS  Google Scholar 

  49. Roelfsema JH, Peters DJ. Rubinstein-Taybi syndrome: clinical and molecular overview. Expert Rev Mol Med. 2007;9(23):1–16.

    PubMed  Google Scholar 

  50. Avvakumov N, Cote J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene. 2007;26(37):5395–407.

    PubMed  CAS  Google Scholar 

  51. Iizuka M, Takahashi Y, Mizzen CA, et al. Histone acetyltransferase Hbo1: catalytic activity, cellular abundance, and links to primary cancers. Gene. 2009;436(1–2):108–14.

    PubMed  CAS  Google Scholar 

  52. Hyman E, Kauraniemi P, Hautaniemi S, et al. Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res. 2002;62(21):6240–5.

    PubMed  CAS  Google Scholar 

  53. Pollack JR, Sorlie T, Perou CM, et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA. 2002;99(20):12963–8.

    PubMed  CAS  Google Scholar 

  54. Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005;37(4):391–400.

    PubMed  CAS  Google Scholar 

  55. Pfister S, Rea S, Taipale M, et al. The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer. 2008;122(6):1207–13.

    PubMed  CAS  Google Scholar 

  56. Giangaspero F, Wellek S, Masuoka J, et al. Stratification of medulloblastoma on the basis of histopathological grading. Acta Neuropathol. 2006;112(1):5–12.

    PubMed  Google Scholar 

  57. Elsheikh SE, Green AR, Rakha EA, et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 2009;69(9):3802–9.

    PubMed  CAS  Google Scholar 

  58. Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338(1):17–31.

    PubMed  CAS  Google Scholar 

  59. de Ruijter AJ, van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370(Pt 3):737–49.

    PubMed  Google Scholar 

  60. Spange S, Wagner T, Heinzel T, et al. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol. 2009;41(1):185–98.

    PubMed  CAS  Google Scholar 

  61. Suzuki J, Chen YY, Scott GK, et al. Protein acetylation and histone deacetylase expression associated with malignant breast cancer progression. Clin Cancer Res. 2009;15(9):3163–71.

    PubMed  CAS  Google Scholar 

  62. Yang XJ, Gregoire S. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol. 2005;25(8):2873–84.

    PubMed  CAS  Google Scholar 

  63. Yang XJ, Seto E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol. 2008;9(3):206–18.

    PubMed  CAS  Google Scholar 

  64. Marks P, Rifkind RA, Richon VM, et al. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer. 2001;1(3):194–202.

    PubMed  CAS  Google Scholar 

  65. Denu JM. The Sir 2 family of protein deacetylases. Curr Opin Chem Biol. 2005;9(5):431–40.

    PubMed  CAS  Google Scholar 

  66. Landry J, Sutton A, Tafrov ST, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA. 2000;97(11):5807–11.

    PubMed  CAS  Google Scholar 

  67. Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005;16(10):4623–35.

    PubMed  CAS  Google Scholar 

  68. Deckert J, Struhl K. Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol Cell Biol. 2001;21(8):2726–35.

    PubMed  CAS  Google Scholar 

  69. Gray SG, Ekstrom TJ. The human histone deacetylase family. Exp Cell Res. 2001;262(2):75–83.

    PubMed  CAS  Google Scholar 

  70. McLaughlin F, La Thangue NB. Histone deacetylase inhibitors open new doors in cancer therapy. Biochem Pharmacol. 2004;68(6):1139–44.

    PubMed  CAS  Google Scholar 

  71. Robertson KD, Ait-Si-Ali S, Yokochi T, et al. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 2000;25(3):338–42.

    PubMed  CAS  Google Scholar 

  72. Toh Y, Ohga T, Endo K, et al. Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. Int J Cancer. 2004;110(3):362–7.

    PubMed  CAS  Google Scholar 

  73. Bai X, Wu L, Liang T, et al. Overexpression of myocyte enhancer factor 2 and histone hyperacetylation in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2008;134(1):83–91.

    PubMed  CAS  Google Scholar 

  74. Barlesi F, Giaccone G, Gallegos-Ruiz MI, et al. Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol. 2007;25(28):4358–64.

    PubMed  Google Scholar 

  75. Yu Y, Xu F, Peng H, et al. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci USA. 1999;96(1):214–9.

    PubMed  CAS  Google Scholar 

  76. Feng W, Lu Z, Luo RZ, et al. Multiple histone deacetylases repress tumor suppressor gene ARHI in breast cancer. Int J Cancer. 2007;120(8):1664–8.

    PubMed  CAS  Google Scholar 

  77. Zhang Z, Yamashita H, Toyama T, et al. HDAC6 expression is correlated with better survival in breast cancer. Clin Cancer Res. 2004;10(20):6962–8.

    PubMed  CAS  Google Scholar 

  78. Saji S, Kawakami M, Hayashi S, et al. Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene. 2005;24(28):4531–9.

    PubMed  CAS  Google Scholar 

  79. Duong V, Bret C, Altucci L, et al. Specific activity of class II histone deacetylases in human breast cancer cells. Mol Cancer Res. 2008;6(12):1908–19.

    PubMed  CAS  Google Scholar 

  80. Bedford MT. Arginine methylation at a glance. J Cell Sci. 2007;120(Pt 24):4243–6.

    PubMed  CAS  Google Scholar 

  81. Wysocka J, Allis CD, Coonrod S. Histone arginine methylation and its dynamic regulation. Front Biosci. 2006;11:344–55.

    PubMed  CAS  Google Scholar 

  82. Katz JE, Dlakic M, Clarke S. Automated identification of putative methyltransferases from genomic open reading frames. Mol Cell Proteomics. 2003;2(8):525–40.

    PubMed  CAS  Google Scholar 

  83. Chang B, Chen Y, Zhao Y, et al. JMJD6 is a histone arginine demethylase. Science. 2007;318(5849):444–7.

    PubMed  CAS  Google Scholar 

  84. Bedford MT, Clarke SG. Protein arginine methylation in mammals: who, what, and why. Mol Cell. 2009;33(1):1–13.

    PubMed  CAS  Google Scholar 

  85. Pal S, Sif S. Interplay between chromatin remodelers and protein arginine methyltransferases. J Cell Physiol. 2007;213(2):306–15.

    PubMed  CAS  Google Scholar 

  86. Lachner M, Jenuwein T. The many faces of histone lysine methylation. Curr Opin Cell Biol. 2002;14(3):286–98.

    PubMed  CAS  Google Scholar 

  87. Feng Q, Wang H, Ng HH, et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol. 2002;12(12):1052–8.

    PubMed  CAS  Google Scholar 

  88. Volkel P, Angrand PO. The control of histone lysine methylation in epigenetic regulation. Biochimie. 2007;89(1):1–20.

    PubMed  Google Scholar 

  89. Vakoc CR, Sachdeva MM, Wang H, et al. Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol. 2006;26(24):9185–95.

    PubMed  CAS  Google Scholar 

  90. Tachibana M, Sugimoto K, Fukushima T, et al. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem. 2001;276(27):25309–17.

    PubMed  CAS  Google Scholar 

  91. Sauvageau M, Sauvageau G. Polycomb group genes: keeping stem cell activity in balance. PLoS Biol. 2008;6(4):e113.

    PubMed  Google Scholar 

  92. Hamamoto R, Furukawa Y, Morita M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004;6(8):731–40.

    PubMed  CAS  Google Scholar 

  93. Brown MA, Sims 3rd RJ, Gottlieb PD, et al. Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer. 2006;5:26.

    PubMed  Google Scholar 

  94. Davis CA, Haberland M, Arnold MA, et al. PRISM/PRDM6, a transcriptional repressor that promotes the proliferative gene program in smooth muscle cells. Mol Cell Biol. 2006;26(7):2626–36.

    PubMed  CAS  Google Scholar 

  95. Gyory I, Wu J, Fejer G, et al. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat Immunol. 2004;5(3):299–308.

    PubMed  CAS  Google Scholar 

  96. Lomberk G, Wallrath L, Urrutia R. The heterochromatin protein 1 family. Genome Biol. 2006;7(7):228.

    PubMed  Google Scholar 

  97. Pena PV, Davrazou F, Shi X, et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature. 2006;442(7098):100–3.

    PubMed  CAS  Google Scholar 

  98. Wang GG, Song J, Wang Z, et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature. 2009;459(7248):847–51.

    PubMed  CAS  Google Scholar 

  99. Dillon N, Festenstein R. Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet. 2002;18(5):252–8.

    PubMed  CAS  Google Scholar 

  100. Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–53.

    PubMed  CAS  Google Scholar 

  101. Hakimi MA, Bochar DA, Chenoweth J, et al. A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc Natl Acad Sci USA. 2002;99(11):7420–5.

    PubMed  CAS  Google Scholar 

  102. Hakimi MA, Dong Y, Lane WS, et al. A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes. J Biol Chem. 2003;278(9):7234–9.

    PubMed  CAS  Google Scholar 

  103. Tong JK, Hassig CA, Schnitzler GR, et al. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature. 1998;395(6705):917–21.

    PubMed  CAS  Google Scholar 

  104. You A, Tong JK, Grozinger CM, et al. CoREST is an integral component of the CoREST-human histone deacetylase complex. Proc Natl Acad Sci USA. 2001;98(4):1454–8.

    PubMed  CAS  Google Scholar 

  105. Metzger E, Wissmann M, Yin N, et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature. 2005;437(7057):436–9.

    PubMed  CAS  Google Scholar 

  106. Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet. 2006;7(9):715–27.

    PubMed  CAS  Google Scholar 

  107. Tsukada Y, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439(7078):811–6.

    PubMed  CAS  Google Scholar 

  108. Yamane K, Toumazou C, Tsukada Y, et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell. 2006;125(3):483–95.

    PubMed  CAS  Google Scholar 

  109. Cloos PA, Christensen J, Agger K, et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature. 2006;442(7100):307–11.

    PubMed  CAS  Google Scholar 

  110. Fodor BD, Kubicek S, Yonezawa M, et al. Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev. 2006;20(12):1557–62.

    PubMed  CAS  Google Scholar 

  111. Whetstine JR, Nottke A, Lan F, et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell. 2006;125(3):467–81.

    PubMed  CAS  Google Scholar 

  112. Huang Y, Fang J, Bedford MT, et al. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science. 2006;312(5774):748–51.

    PubMed  CAS  Google Scholar 

  113. Iwase S, Lan F, Bayliss P, et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell. 2007;128(6):1077–88.

    PubMed  CAS  Google Scholar 

  114. Klose RJ, Yan Q, Tothova Z, et al. The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell. 2007;128(5):889–900.

    PubMed  CAS  Google Scholar 

  115. Yamane K, Tateishi K, Klose RJ, et al. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell. 2007;25(6):801–12.

    PubMed  CAS  Google Scholar 

  116. Agger K, Cloos PA, Christensen J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449(7163):731–4.

    PubMed  CAS  Google Scholar 

  117. De Santa F, Totaro MG, Prosperini E, et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell. 2007;130(6):1083–94.

    PubMed  Google Scholar 

  118. Hong S, Cho YW, Yu LR, et al. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA. 2007;104(47):18439–44.

    PubMed  CAS  Google Scholar 

  119. Lan F, Bayliss PE, Rinn JL, et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449(7163):689–94.

    PubMed  CAS  Google Scholar 

  120. Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007;7(11):823–33.

    PubMed  CAS  Google Scholar 

  121. Coles AH, Jones SN. The ING gene family in the regulation of cell growth and tumorigenesis. J Cell Physiol. 2009;218(1):45–57.

    PubMed  CAS  Google Scholar 

  122. Garkavtsev I, Kazarov A, Gudkov A, et al. Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nat Genet. 1996;14(4):415–20.

    PubMed  CAS  Google Scholar 

  123. Tokunaga E, Maehara Y, Oki E, et al. Diminished expression of ING1 mRNA and the correlation with p53 expression in breast cancers. Cancer Lett. 2000;152(1):15–22.

    PubMed  CAS  Google Scholar 

  124. Toyama T, Iwase H, Watson P, et al. Suppression of ING1 expression in sporadic breast cancer. Oncogene. 1999;18(37):5187–93.

    PubMed  CAS  Google Scholar 

  125. Buyse IM, Shao G, Huang S. The retinoblastoma protein binds to RIZ, a zinc-finger protein that shares an epitope with the adenovirus E1A protein. Proc Natl Acad Sci USA. 1995;92(10):4467–71.

    PubMed  CAS  Google Scholar 

  126. Muraoka M, Konishi M, Kikuchi-Yanoshita R, et al. p300 gene alterations in colorectal and gastric carcinomas. Oncogene. 1996;12(7):1565–9.

    PubMed  CAS  Google Scholar 

  127. Gibbons RJ. Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes. Hum Mol Genet. 2005;14(Spec No 1):R85–92.

    PubMed  CAS  Google Scholar 

  128. Steele-Perkins G, Fang W, Yang XH, et al. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes Dev. 2001;15(17):2250–62.

    PubMed  CAS  Google Scholar 

  129. Lachner M, O’Carroll D, Rea S, et al. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001;410(6824):116–20.

    PubMed  CAS  Google Scholar 

  130. Peters AH, O’Carroll D, Scherthan H, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 2001;107(3):323–37.

    PubMed  CAS  Google Scholar 

  131. Moss TJ, Wallrath LL. Connections between epigenetic gene silencing and human disease. Mutat Res. 2007;618(1–2):163–74.

    PubMed  CAS  Google Scholar 

  132. Bracken AP, Pasini D, Capra M, et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. Embo J. 2003;22(20):5323–35.

    PubMed  CAS  Google Scholar 

  133. Croonquist PA, Van Ness B. The polycomb group protein enhancer of zeste homolog 2 (EZH 2) is an oncogene that influences myeloma cell growth and the mutant ras phenotype. Oncogene. 2005;24(41):6269–80.

    PubMed  CAS  Google Scholar 

  134. Kotake Y, Cao R, Viatour P, et al. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev. 2007;21(1):49–54.

    PubMed  CAS  Google Scholar 

  135. Yu J, Yu J, Rhodes DR, et al. A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res. 2007;67(22):10657–63.

    PubMed  CAS  Google Scholar 

  136. Wei Y, Xia W, Zhang Z, et al. Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog. 2008;47(9):701–6.

    PubMed  CAS  Google Scholar 

  137. Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448(7153):553–60.

    PubMed  CAS  Google Scholar 

  138. Ringrose L, Paro R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development. 2007;134(2):223–32.

    PubMed  CAS  Google Scholar 

  139. Wen B, Wu H, Shinkai Y, et al. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet. 2009;41(2):246–50.

    PubMed  CAS  Google Scholar 

  140. Lu PJ, Sundquist K, Baeckstrom D, et al. A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J Biol Chem. 1999;274(22):15633–45.

    PubMed  CAS  Google Scholar 

  141. Buszczak M, Paterno S, Spradling AC. Drosophila stem cells share a common requirement for the histone H2B ubiquitin protease scrawny. Science. 2009;323(5911):248–51.

    PubMed  CAS  Google Scholar 

  142. Nakanishi S, Lee JS, Gardner KE, et al. Histone H2BK123 monoubiquitination is the critical determinant for H3K4 and H3K79 trimethylation by COMPASS and Dot1. J Cell Biol. 2009;186(3):371–7.

    PubMed  CAS  Google Scholar 

  143. Wu M, Wang PF, Lee JS, et al. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol Cell Biol. 2008;28(24):7337–44.

    PubMed  CAS  Google Scholar 

  144. Ausio J, Abbott DW. The many tales of a tail: carboxyl-terminal tail heterogeneity specializes histone H2A variants for defined chromatin function. Biochemistry. 2002;41(19):5945–9.

    PubMed  CAS  Google Scholar 

  145. Sarma K, Reinberg D. Histone variants meet their match. Nat Rev Mol Cell Biol. 2005;6(2):139–49.

    PubMed  CAS  Google Scholar 

  146. Malik HS, Henikoff S. Phylogenomics of the nucleosome. Nat Struct Biol. 2003;10(11):882–91.

    PubMed  CAS  Google Scholar 

  147. Redon C, Pilch D, Rogakou E, et al. Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev. 2002;12(2):162–9.

    PubMed  CAS  Google Scholar 

  148. Suto RK, Clarkson MJ, Tremethick DJ, et al. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat Struct Biol. 2000;7(12):1121–4.

    PubMed  CAS  Google Scholar 

  149. Svaren J, Chalkley R. The structure and assembly of active chromatin. Trends Genet. 1990;6(2):52–6.

    PubMed  CAS  Google Scholar 

  150. Boulard M, Bouvet P, Kundu TK, et al. Histone variant nucleosomes: structure, function and implication in disease. Subcell Biochem. 2007;41:71–89.

    PubMed  Google Scholar 

  151. Kusch T, Workman JL. Histone variants and complexes involved in their exchange. Subcell Biochem. 2007;41:91–109.

    PubMed  Google Scholar 

  152. Svotelis A, Gevry N, Gaudreau L. Regulation of gene expression and cellular proliferation by histone H2A.Z. Biochem Cell Biol. 2009;87(1):179–88.

    PubMed  CAS  Google Scholar 

  153. Francisco DC, Peddi P, Hair JM, et al. Induction and processing of complex DNA damage in human breast cancer cells MCF-7 and nonmalignant MCF-10A cells. Free Radic Biol Med. 2008;44(4):558–69.

    PubMed  CAS  Google Scholar 

  154. Kuo LJ, Yang LX. Gamma-H2AX—a novel biomarker for DNA double-strand breaks. In Vivo. 2008;22(3):305–9.

    PubMed  CAS  Google Scholar 

  155. Till S, Ladurner AG. Sensing NAD metabolites through macro domains. Front Biosci. 2009;14:3246–58.

    PubMed  CAS  Google Scholar 

  156. Ahel D, Horejsi Z, Wiechens N, et al. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science. 2009;325(5945):1240–3.

    PubMed  CAS  Google Scholar 

  157. Gottschalk AJ, Timinszky G, Kong SE, et al. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc Natl Acad Sci USA. 2009;106(33):13770–4.

    PubMed  CAS  Google Scholar 

  158. Ouararhni K, Hadj-Slimane R, Ait-Si-Ali S, et al. The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Genes Dev. 2006;20(23):3324–36.

    PubMed  CAS  Google Scholar 

  159. Boulikas T. Relation between carcinogenesis, chromatin structure and poly(ADP-ribosylation) (review). Anticancer Res. 1991;11(2):489–527.

    PubMed  CAS  Google Scholar 

  160. Timinszky G, Till S, Hassa PO, et al. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol. 2009;16(9):923–9.

    PubMed  CAS  Google Scholar 

  161. Gevry N, Hardy S, Jacques PE, et al. Histone H2A.Z is essential for estrogen receptor signaling. Genes Dev. 2009.

  162. Hua S, Kallen CB, Dhar R, et al. Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression. Mol Syst Biol. 2008;4:188.

    PubMed  Google Scholar 

  163. Altaf M, Auger A, Covic M, et al. Connection between histone H2A variants and chromatin remodeling complexes. Biochem Cell Biol. 2009;87(1):35–50.

    PubMed  CAS  Google Scholar 

  164. Guillemette B, Gaudreau L. Reuniting the contrasting functions of H2A.Z. Biochem Cell Biol. 2006;84(4):528–35.

    PubMed  CAS  Google Scholar 

  165. Zlatanova J, Thakar A. H2A.Z: view from the top. Structure. 2008;16(2):166–79.

    PubMed  CAS  Google Scholar 

  166. Thatcher TH, Gorovsky MA. Phylogenetic analysis of the core histones H2A, H2B, H3, and H4. Nucleic Acids Res. 1994;22(2):174–9.

    PubMed  CAS  Google Scholar 

  167. Iouzalen N, Moreau J, Mechali M. H2A.ZI, a new variant histone expressed during Xenopus early development exhibits several distinct features from the core histone H2A. Nucleic Acids Res. 1996;24(20):3947–52.

    PubMed  CAS  Google Scholar 

  168. Jiang W, Guo X, Bhavanandan VP. Histone H2A.F/Z subfamily: the smallest member and the signature sequence. Biochem Biophys Res Commun. 1998;245(2):613–7.

    PubMed  CAS  Google Scholar 

  169. Zhang H, Roberts DN, Cairns BR. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell. 2005;123(2):219–31.

    PubMed  CAS  Google Scholar 

  170. van Daal A, Elgin SC. A histone variant, H2AvD, is essential in Drosophila melanogaster. Mol Biol Cell. 1992;3(6):593–602.

    PubMed  Google Scholar 

  171. Ridgway P, Brown KD, Rangasamy D, et al. Unique residues on the H2A.Z containing nucleosome surface are important for Xenopus laevis development. J Biol Chem. 2004;279(42):43815–20.

    PubMed  CAS  Google Scholar 

  172. Faast R, Thonglairoam V, Schulz TC, et al. Histone variant H2A.Z is required for early mammalian development. Curr Biol. 2001;11(15):1183–7.

    PubMed  CAS  Google Scholar 

  173. Krogan NJ, Keogh MC, Datta N, et al. A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell. 2003;12(6):1565–76.

    PubMed  CAS  Google Scholar 

  174. Larochelle M, Gaudreau L. H2A.Z has a function reminiscent of an activator required for preferential binding to intergenic DNA. Embo J. 2003;22(17):4512–22.

    PubMed  CAS  Google Scholar 

  175. Dhillon N, Oki M, Szyjka SJ, et al. H2A.Z functions to regulate progression through the cell cycle. Mol Cell Biol. 2006;26(2):489–501.

    PubMed  CAS  Google Scholar 

  176. Rangasamy D, Greaves I, Tremethick DJ. RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nat Struct Mol Biol. 2004;11(7):650–5.

    PubMed  CAS  Google Scholar 

  177. Rangasamy D, Berven L, Ridgway P, et al. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. Embo J. 2003;22(7):1599–607.

    PubMed  CAS  Google Scholar 

  178. Allis CD, Glover CV, Bowen JK, et al. Histone variants specific to the transcriptionally active, amitotically dividing macronucleus of the unicellular eucaryote, Tetrahymena thermophila. Cell. 1980;20(3):609–17.

    PubMed  CAS  Google Scholar 

  179. Meneghini MD, Wu M, Madhani HD. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell. 2003;112(5):725–36.

    PubMed  CAS  Google Scholar 

  180. Li B, Pattenden SG, Lee D, et al. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc Natl Acad Sci USA. 2005;102(51):18385–90.

    PubMed  CAS  Google Scholar 

  181. Park YJ, Dyer PN, Tremethick DJ, et al. A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J Biol Chem. 2004;279(23):24274–82.

    PubMed  CAS  Google Scholar 

  182. Abbott DW, Ivanova VS, Wang X, et al. Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation. J Biol Chem. 2001;276(45):41945–9.

    PubMed  CAS  Google Scholar 

  183. Millar CB, Xu F, Zhang K, et al. Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev. 2006;20(6):711–22.

    PubMed  CAS  Google Scholar 

  184. Raisner RM, Hartley PD, Meneghini MD, et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell. 2005;123(2):233–48.

    PubMed  CAS  Google Scholar 

  185. Guillemette B, Bataille AR, Gevry N, et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol. 2005;3(12):e384.

    PubMed  Google Scholar 

  186. Adam M, Robert F, Larochelle M, et al. H2A.Z is required for global chromatin integrity and for recruitment of RNA polymerase II under specific conditions. Mol Cell Biol. 2001;21(18):6270–9.

    PubMed  CAS  Google Scholar 

  187. Farris SD, Rubio ED, Moon JJ, et al. Transcription-induced chromatin remodeling at the c-myc gene involves the local exchange of histone H2A.Z. J Biol Chem. 2005;280(26):25298–303.

    PubMed  CAS  Google Scholar 

  188. Fan JY, Rangasamy D, Luger K, et al. H2A.Z alters the nucleosome surface to promote HP1alpha-mediated chromatin fiber folding. Mol Cell. 2004;16(4):655–61.

    PubMed  CAS  Google Scholar 

  189. Swaminathan J, Baxter EM, Corces VG. The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. Genes Dev. 2005;19(1):65–76.

    PubMed  CAS  Google Scholar 

  190. Sarcinella E, Zuzarte PC, Lau PN, et al. Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin. Mol Cell Biol. 2007;27(18):6457–68.

    PubMed  CAS  Google Scholar 

  191. Dunican DS, McWilliam P, Tighe O, et al. Gene expression differences between the microsatellite instability (MIN) and chromosomal instability (CIN) phenotypes in colorectal cancer revealed by high-density cDNA array hybridization. Oncogene. 2002;21(20):3253–7.

    PubMed  CAS  Google Scholar 

  192. Zucchi I, Mento E, Kuznetsov VA, et al. Gene expression profiles of epithelial cells microscopically isolated from a breast-invasive ductal carcinoma and a nodal metastasis. Proc Natl Acad Sci USA. 2004;101(52):18147–52.

    PubMed  CAS  Google Scholar 

  193. Rhodes DR, Yu J, Shanker K, et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA. 2004;101(25):9309–14.

    PubMed  CAS  Google Scholar 

  194. Dubik D, Shiu RP. Mechanism of estrogen activation of c-myc oncogene expression. Oncogene. 1992;7(8):1587–94.

    PubMed  CAS  Google Scholar 

  195. Cheng AS, Jin VX, Fan M, et al. Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-alpha responsive promoters. Mol Cell. 2006;21(3):393–404.

    PubMed  CAS  Google Scholar 

  196. Santisteban MS, Kalashnikova T, Smith MM. Histone H2A.Z regulats transcription and is partially redundant with nucleosome remodeling complexes. Cell. 2000;103(3):411–22.

    PubMed  CAS  Google Scholar 

  197. Duong V, Licznar A, Margueron R, et al. ERalpha and ERbeta expression and transcriptional activity are differentially regulated by HDAC inhibitors. Oncogene. 2006;25(12):1799–806.

    PubMed  CAS  Google Scholar 

  198. Margueron R, Licznar A, Lazennec G, et al. Oestrogen receptor alpha increases p21(WAF1/CIP1) gene expression and the antiproliferative activity of histone deacetylase inhibitors in human breast cancer cells. J Endocrinol. 2003;179(1):41–53.

    PubMed  CAS  Google Scholar 

  199. Yi X, Wei W, Wang SY, et al. Histone deacetylase inhibitor SAHA induces ERalpha degradation in breast cancer MCF-7 cells by CHIP-mediated ubiquitin pathway and inhibits survival signaling. Biochem Pharmacol. 2008;75(9):1697–705.

    PubMed  CAS  Google Scholar 

  200. Alao JP, Lam EW, Ali S, et al. Histone deacetylase inhibitor trichostatin A represses estrogen receptor alpha-dependent transcription and promotes proteasomal degradation of cyclin D1 in human breast carcinoma cell lines. Clin Cancer Res. 2004;10(23):8094–104.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MD is supported by a CNRS postdoctoral fellowship. We thank Marie Vandromme for sharing her expertise with histone modifying enzymes, team members for fruitful discussions and colleagues for their understanding that much interesting work cannot be cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Bystricky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalvai, M., Bystricky, K. The Role of Histone Modifications and Variants in Regulating Gene Expression in Breast Cancer. J Mammary Gland Biol Neoplasia 15, 19–33 (2010). https://doi.org/10.1007/s10911-010-9167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-010-9167-z

Keywords

Navigation