Advertisement

Journal of Mammary Gland Biology and Neoplasia

, Volume 14, Issue 3, pp 261–268 | Cite as

Metabolic Adaptations During Lactogenesis

Fatty acid and lactose synthesis in cow mammary tissue
  • R. W. Mellenberger
  • D. E. Bauman
  • D. R. Nelson
Article

1. Mammary-tissue biopsies were obtained from multiparous cows at 30 and 7 days pre partum and 7 and 40 days postpartum. Investigations of the effect of lactogenesis on fatty acid and lactose synthesis involved measurements of biosynthetic capacity (tissue-slice incubations in vitro) and activities ofrelevant enzymes. 2. Fatty acid synthesis from acetate increased over 20-fold from 30 days pre partum to 40 days post partum. Changes in the lipogenic capacity of mammary-tissue slices more closely paralleled increases in the activities of acetyl-CoA carboxylase (EC 6.4.1.2) and acetyl-CoA synthetase (EC 6.2.1.1) than of other enzymes involved in acetate incorporation into fatty acids or in NADPH generation. 3. Lactose biosynthesis by mammary-tissue slices, lactose synthetase activity (EC 2.4.1.22) and α-lactalbumin concentration were all negligible at 30 days pre partum but increased 2.5-4-fold between 7 days pre partum and 40 days post partum. Phosphoglucomutase (EC 2.7.5.1), UDP-glucose pyrophosphorylase (EC 2.7.7.9) and UDPglucose 4-epimerase (EC 5.1.3.2) had substantial activities at 30 days pre partum and increased less dramatically during lactogenesis. 4. Results are consistent with acetyl-CoA carboxylase and perhaps acetyl-CoA synthetase representing the regulatory enzyme(s) in fatty acid synthesis, with lactose synthetase (α-lactalbumin) serving a similar function in lactose biosynthesis.

Keywords

Lactose Fatty Acid Synthesis Post Partum Phosphoglucomutase Acetate Incorporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Annison, E. F. & Linzell, J. L. (1964) J. Physiol. (London) 175, 372-385Google Scholar
  2. Baldwin, R. L. (1966) J. Dairy Sci. 49, 1533-1542PubMedGoogle Scholar
  3. Baldwin, R. L. (1969) in Lactogenesis: The Initiation of Milk Secretion at Parturition (Reynolds, M. & Folley, S. J., eds.), pp. 85-95, University of Pennsylvania Press, Philadelphia, Pa.Google Scholar
  4. Baldwin, R. L. & Milligan, L. P. (1966) J. Biol. Chem. 241, 2058-2066PubMedGoogle Scholar
  5. Bauman, D. E. & Davis, C. L. (1973) in Lactation: A Comprehensive Treatise (Larson, B. L. & Smith, V., eds.), vol. 2, ch. 10, Academic Press, New York, in the pressGoogle Scholar
  6. Bauman, D. E., Brown, R. E. & Davis, C. L. (1970) Arch. Biochem. Biophys. 140, 237-244PubMedCrossRefGoogle Scholar
  7. Bauman, D. E., DeKay, D. E., Ingle, D. L. &Brown, R. E. (1972) Comp. Biochem. Physiol. 43B, 479-486Google Scholar
  8. Bauman, D. E., Mellenberger, R. W. & Derrig, R. G. (1973) J. Dairy Sci. 46, in the pressGoogle Scholar
  9. Brew, K. (1969) Nature (London) 222, 671-672CrossRefGoogle Scholar
  10. Brodbeck, U. & Ebner, K. E. (1966) J. Biol. Chem. 241, 5526-5532PubMedGoogle Scholar
  11. Brodbeck, U., Denton, W. L., Tanahashi, N. & Ebner, K. E. (1967) J. Biol. Chem. 242, 1391-1397PubMedGoogle Scholar
  12. Chang, H., Seidman, I., Teebor, G. & Lane, M. D. (1967) Biochem. Biophys. Res. Commun. 28, 682-686PubMedCrossRefGoogle Scholar
  13. Coffey, R. G. & Reithel, F. J. (1969) Anal. Biochem. 32, 229-232PubMedCrossRefGoogle Scholar
  14. DeLuca, H. F. & Cohen, P. P. (1964) in Manometric Techniques (Umbreit, W. W., Burris, R. H. & Stauffer, J. F., eds.), p. 131, Burgess Publishing Co., Minneapolis, Minn.Google Scholar
  15. Ganguly, J. (1960) Biochim. Biophys. Acta 40, 110-118PubMedCrossRefGoogle Scholar
  16. Glass, R. L., Troolin, H. A. & Jenness, R. (1967) Comp. Biochem. Physiol. 22, 415-425PubMedCrossRefGoogle Scholar
  17. Gul, B. & Dils, R. (1969) Biochem. J. 112, 293-301PubMedGoogle Scholar
  18. Gumaa, K. A., Greenbaum, A. L. & McLean, P. (1973) Eur. J. Biochem. 34, 188-198PubMedCrossRefGoogle Scholar
  19. Hartmann, P. E. & Jones, E. A. (1970) Biochem. J. 116, 657-661PubMedGoogle Scholar
  20. Howanitz, P. J. & Levy, H. R. (1965) Biochim. Biophys. Acta 106, 430-433PubMedGoogle Scholar
  21. Huang, K. P. (1970) Anal. Biochenm. 37, 98-104CrossRefGoogle Scholar
  22. Ingle, D. L., Bauman, D. E. & Garrigus, U. S. (1972) J. Nutr. 102, 609-616PubMedGoogle Scholar
  23. Jones, E. A. (1972) Biochem. J. 126, 67-78PubMedGoogle Scholar
  24. Katz, J. &Wals, P. A. (1972) Biochem. J. 128, 879-899PubMedGoogle Scholar
  25. Keenan, T. W., Morre, D. J. & Cheetham, R. D. (1970) Nature (London) 228, 1105-1106CrossRefGoogle Scholar
  26. Kinsella, J. E. & Heald, C. W. (1972) J. Dairy Sci. 55, 1085-1092PubMedCrossRefGoogle Scholar
  27. Koeltzow, D. E., Epley, J. D. & Conrad, H. E. (1968) Biochemistry 7, 2920-2928PubMedCrossRefGoogle Scholar
  28. Kuhn, N. J. (1968) Biochem. J. 106, 743-748PubMedGoogle Scholar
  29. Kuhn, N. J. & Lowenstein, J. M. (1967) Biochem. J. 105, 995-1002PubMedGoogle Scholar
  30. Larson, B. L. & Hageman, E. C. (1963) J. Dairy Sci. 46, 14-18CrossRefGoogle Scholar
  31. Ley, J. M. & Jenness, R. (1970) Arch. Biochem. Biophys. 138, 464-469PubMedCrossRefGoogle Scholar
  32. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) J. Biol. Chiem. 193, 265-275Google Scholar
  33. Martal, J. (1970) Ann. Biol. Anim. Biochim. Biophys. 10, 209-221CrossRefGoogle Scholar
  34. Martin, D. E., Horning, M. G. & Vagelos, P. R. (1960) J. Biol. Chem. 236, 663-668Google Scholar
  35. McKenzie, L., Fitzgerald, D. K. & Ebner, K. E. (1971) Biochim. Biophys. Acta 230, 526-530PubMedGoogle Scholar
  36. McLean, P. (1958) Biochim. Biophys. Acta 30, 303-315PubMedCrossRefGoogle Scholar
  37. Mellenberger, R. W. (1973) Ph.D. Thesis, University of Illinois, Urbana, Ill.Google Scholar
  38. Numa, S., Bortz, W. M. & Lynen, F. (1965) Advan. Enzyme Regul. 3, 407-423CrossRefGoogle Scholar
  39. Palmiter, R. D. (1969) Biochem. J. 113, 409-417PubMedGoogle Scholar
  40. Palmquist, D. L., Davis, C. L., Brown, R. E. & Sachan, D. S. (1969) J. Dairy Sci. 52, 633-638Google Scholar
  41. Rees, E. D. & Huggins, C. (1960) Cancer Res. 20, 963-971PubMedGoogle Scholar
  42. Sladek, M., Barth, C. & Decker, K. (1970) Anal. Biochem. 18, 469474Google Scholar
  43. Smith, G. H. (1971) Proc. Nutr. Soc. 30, 265-272PubMedCrossRefGoogle Scholar
  44. Smith, S. & Abraham, S. (1971) J. Biol. Chem. 246, 6428-6435PubMedGoogle Scholar
  45. Smith, S., Easter, D. J. &Dils, R. (1966) Biochim. Biophys. Acta 125, 445-455PubMedGoogle Scholar
  46. Strong, C. R. &Dils, R. (1972) Biochem. J. 128, 1303-1309PubMedGoogle Scholar
  47. Venkataraman, R. & Reithel, F. J. (1956) Arch. Biochem. Biophys. 70, 205-209CrossRefGoogle Scholar
  48. Wood, H. G., Peeters, G. J., Verbeke, R., Lauryssens, M. & Jacobson, B. (1965) Biochem. J. 96, 607-615PubMedGoogle Scholar
  49. Yang, Y. T. & Baldwin, R. L. (1973) J. Dairy Sci. 56, 350-365PubMedCrossRefGoogle Scholar

Copyright information

© Dale E Bauman et al 2009

Authors and Affiliations

  • R. W. Mellenberger
    • 1
    • 2
  • D. E. Bauman
    • 1
  • D. R. Nelson
    • 3
  1. 1.Department ofDairy ScienceUniversity ofIllinoisUrbanaUSA
  2. 2.Department of Dairy ScienceMichigan State UniversityEast LansingUSA
  3. 3.School of Veterinary MedicineUniversity ofIllinoisUrbanaUSA

Personalised recommendations