Calcium Sensing by the Mammary Gland

  • Joshua N. VanHouten


Calcium is an important nutrient that is secreted into milk in quantities that put a considerable stress upon maternal calcium homeostasis. Here we summarize the evidence that two important entities, the extracellular calcium-sensing receptor (CaR) and parathyroid hormone-related protein (PTHrP) are involved in a feedback loop that regulates calcium fluxes to the mammary gland. The CaR may also play a role in regulating milk secretion, and may regulate the proliferation of normal and neoplastic mammary epithelial cells. Finally, the relationship between the CaR and PTHrP in breast cancer cells may promote the formation of osteolytic bone metastases.


calcium-sensing receptor lactation calcium metabolism bone PTHrP 





calcium-sensing receptor


distal convoluted tubule


G-protein-coupled receptor


phospholipase A2


phospholipase C


phospholipase D


plasma membrane calcium-ATPase


parathyroid hormone


parathyroid hormone-related protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    McGrath CM, Soule HD. Calcium regulation of normal human mammary epithelial cell growth in culture. In Vitro 1984;20(8):652–62.Google Scholar
  2. (2).
    Russo J, Mills MJ, Moussalli MJ, Russo IH. Influence of human breast development on the growth properties of primary cultures. In Vitro Cell Dev Biol 1989;25(7):643–49.Google Scholar
  3. (3).
    VanHouten J, Dann P, McGeoch G, Brown EM, Krapcho K, Neville M, Wysolmerski JJ. The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J Clin Invest 2004;113(4):598–608.Google Scholar
  4. (4).
    Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 2001;81(1):239–97.Google Scholar
  5. (5).
    Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 1993;366(6455):575–80.Google Scholar
  6. (6).
    Bai M, Trivedi S, Brown EM. Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J Biol Chem 1998;273(36):23605–10.Google Scholar
  7. (7).
    Bai M, Trivedi S, Kifor O, Quinn SJ, Brown EM. Intermolecular interactions between dimeric calcium-sensing receptor monomers are important for its normal function. Proc Natl Acad Sci USA 1999;96(6):2834–9.Google Scholar
  8. (8).
    Nemeth EF, Steffey ME, Hammerland LG, Hung BC, Van Wagenen BC, DelMar EG, Balandrin MF. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA 1998;95(7):4040–5.Google Scholar
  9. (9).
    Nemeth EF. Pharmacological regulation of parathyroid hormone secretion. Curr Pharm Des 2002;8(23):2077–87.Google Scholar
  10. (10).
    Nemeth EF. Calcimimetic and calcilytic drugs: Just for parathyroid cells? Cell Calcium 2004;35(3):283–9.Google Scholar
  11. (11).
    Kifor O, Kifor I, Brown EM. Signal transduction in the parathyroid. Curr Opin Nephrol Hypertens 2002;11(4):397–402.Google Scholar
  12. (12).
    Kifor O, Diaz R, Butters R, Brown EM. The Ca2+-sensing receptor (CaR) activates phospholipases C, A2, and D in bovine parathyroid and CaR-transfected, human embryonic kidney (HEK293) cells. J Bone Miner Res 1997;12(5):715–25.Google Scholar
  13. (13).
    Kifor O, MacLeod RJ, Diaz R, Bai M, Yamaguchi T, Yao T, Kifor I, Brown EM. Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells. Am J Physiol Renal Physiol 2001;280(2):F291–302.Google Scholar
  14. (14).
    Arthur JM, Lawrence MS, Payne CR, Rane MJ, McLeish KR. The calcium-sensing receptor stimulates JNK in MDCK cells. Biochem Biophys Res Commun 2000;275(2):538–41.Google Scholar
  15. (15).
    McNeil SE, Hobson SA, Nipper V, Rodland KD. Functional calcium-sensing receptors in rat fibroblasts are required for activation of SRC kinase and mitogen-activated protein kinase in response to extracellular calcium. J Biol Chem 1998;273(2):1114–20.Google Scholar
  16. (16).
    Blankenship KA, Williams JJ, Lawrence MS, McLeish KR, Dean WL, Arthur JM. The calcium-sensing receptor regulates calcium absorption in MDCK cells by inhibition of PMCA. Am J Physiol Renal Physiol 2001;280(5):F815–22.Google Scholar
  17. (17).
    Chattopadhyay N, Vassilev PM, Brown EM. Calcium-sensing receptor: Roles in and beyond systemic calcium homeostasis. Biol Chem 1997;378(8):759–68.Google Scholar
  18. (18).
    Tfelt-Hansen J, MacLeod RJ, Chattopadhyay N, Yano S, Quinn S, Ren X, Terwilliger EF, Schwarz P, Brown EM. Calcium-sensing receptor stimulates PTHrP release by PKC-, p38 MAPK-, JNK- and ERK1/2-dependent pathways in H-500 cells. Am J Physiol Endocrinol Metab 2003;285(2):E329–37.Google Scholar
  19. (19).
    Sanders JL, Chattopadhyay N, Kifor O, Yamaguchi T, Brown EM. Ca(2+)-sensing receptor expression and PTHrP secretion in PC-3 human prostate cancer cells. Am J Physiol Endocrinol Metab 2001;281(6):E1267–74.Google Scholar
  20. (20).
    Sanders JL, Chattopadhyay N, Kifor O, Yamaguchi T, Brown EM. Extracellular calcium-sensing receptor (CaR) expression and its potential role in parathyroid hormone-related peptide (PTHrP) secretion in the H-500 rat Leydig cell model of humoral hypercalcemia of malignancy. Biochem Biophys Res Commun 2000;269(2):427–32.Google Scholar
  21. (21).
    Buchs N, Manen D, Bonjour JP, Rizzoli R. Calcium stimulates parathyroid hormone-related protein production in Leydig tumor cells through a putative cation-sensing mechanism. Eur J Endocrinol 2000;142(5):500–05.Google Scholar
  22. (22).
    Chattopadhyay N, Evliyaoglu C, Heese O, Carroll R, Sanders J, Black P, Brown EM. Regulation of secretion of PTHrP by Ca(2+)-sensing receptor in human astrocytes, astrocytomas, and meningiomas. Am J Physiol Cell Physiol 2000;279(3):C691–9.Google Scholar
  23. (23).
    MacLeod RJ, Chattopadhyay N, Brown EM. PTHrP stimulated by the calcium-sensing receptor requires MAP kinase activation. Am J Physiol Endocrinol Metab 2003;284(2):E435–42.Google Scholar
  24. (24).
    Kovacs CS, Kronenberg HM. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr Rev 1997;18(6):832–72.Google Scholar
  25. (25).
    Kovacs CS. Calcium and bone metabolism in pregnancy and lactation. J Clin Endocrinol Metab 2001;86(6):2344–8.Google Scholar
  26. (26).
    Kalkwarf HJ, Specker BL. Bone mineral changes during pregnancy and lactation. Endocrine 2002;17(1):49–53.Google Scholar
  27. (27).
    Reid IR. The skeleton in pregnancy and lactation. Intern Med J 2002;32(9–10):433–4.Google Scholar
  28. (28).
    VanHouten JN, Wysolmerski JJ. Low estrogen and high parathyroid hormone-related peptide levels contribute to accelerated bone resorption and bone loss in lactating mice. Endocrinology 2003;144(12):5521–9.Google Scholar
  29. (29).
    Prentice A. Calcium in pregnancy and lactation. Annu Rev Nutr 2000;20:249–72.Google Scholar
  30. (30).
    Garner SC, Boass A, Toverud SU. Parathyroid hormone is not required for normal milk composition or secretion or lactation-associated bone loss in normocalcemic rats. J Bone Miner Res 1990;5(1):69–75.Google Scholar
  31. (31).
    Sowers M, Zhang D, Hollis BW, Shapiro B, Janney CA, Crutchfield M, Schork MA, Stanczyk F, Randolph J. Role of calciotrophic hormones in calcium mobilization of lactation. Am J Clin Nutr 1998;67(2):284–91.Google Scholar
  32. (32).
    Wysolmerski JJ, Stewart AF. The physiology of parathyroid hormone-related protein: An emerging role as a developmental factor. Annu Rev Physiol 1998;60:431–60.Google Scholar
  33. (33).
    Bucht E, Rong H, Bremme K, Granberg B, Rian E, Torring O. Midmolecular parathyroid hormone-related peptide in serum during pregnancy, lactation and in umbilical cord blood. Eur J Endocrinol 1995;132(4):438–43.Google Scholar
  34. (34).
    Dobnig H, Kainer F, Stepan V, Winter R, Lipp R, Schaffer M, Kahr A, Nocnik S, Patterer G, Leb G. Elevated parathyroid hormone-related peptide levels after human gestation: Relationship to changes in bone and mineral metabolism. J Clin Endocrinol Metab 1995;80(12):3699–707.Google Scholar
  35. (35).
    Sowers MF, Hollis BW, Shapiro B, Randolph J, Janney CA, Zhang D, Schork A, Crutchfield M, Stanczyk F, Russell-Aulet M. Elevated parathyroid hormone-related peptide associated with lactation and bone density loss. JAMA 1996;276(7):549–54.Google Scholar
  36. (36).
    Grill V, Hillary J, Ho PM, Law FM, MacIsaac RJ, MacIsaac IA, Moseley JM, Martin TJ. Parathyroid hormone-related protein: A possible endocrine function in lactation. Clin Endocrinol (Oxf) 1992;37(5):405–10.Google Scholar
  37. (37).
    Lippuner K, Zehnder HJ, Casez JP, Takkinen R, Jaeger P. PTH-related protein is released into the mother’s bloodstream during location: Evidence for beneficial effects on maternal calcium-phosphate metabolism. J Bone Miner Res 1996;11(10):1394–9.Google Scholar
  38. (38).
    Ratcliffe WA, Thompson GE, Care AD, Peaker M. Production of parathyroid hormone-related protein by the mammary gland of the goat. J Endocrinol 1992;133(1):87–93.Google Scholar
  39. (39).
    VanHouten JN, Dann P, Stewart AF, Watson CJ, Pollak M, Karaplis AC, Wysolmerski JJ. Mammary-specific deletion of parathyroid hormone-related protein preserves bone mass during lactation. J Clin Invest 2003;112(9):1429–36.Google Scholar
  40. (40).
    Sanders JL, Chattopadhyay N, Kifor O, Yamaguchi T, Butters RR, Brown EM. Extracellular calcium-sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines. Endocrinology 2000;141(12):4357–64.Google Scholar
  41. (41).
    Ho C, Conner DA, Pollak MR, Ladd DJ, Kifor O, Warren HB, Brown EM, Seidman JG, Seidman CE. A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet 1995;11(4):389–94.Google Scholar
  42. (42).
    Medina D, Oborn CJ. Growth of preneoplastic mammary epithelial cells in serum-free medium. Cancer Res 1980;40(11):3982–7.Google Scholar
  43. (43).
    Simpson RU, Arnold AJ. Calcium antagonizes 1,25-dihydroxyvitamin D3 inhibition of breast cancer cell proliferation. Endocrinology 1986;119(5):2284–9.Google Scholar
  44. (44).
    Cheng I, Klingensmith ME, Chattopadhyay N, Kifor O, Butters RR, Soybel DI, Brown EM. Identification and localization of the extracellular calcium-sensing receptor in human breast. J Clin Endocrinol Metab 1998;83(2):703–7.Google Scholar
  45. (45).
    Tovar Sepulveda VA, Shen X, Falzon M. Intracrine PTHrP protects against serum starvation-induced apoptosis and regulates the cell cycle in MCF-7 breast cancer cells. Endocrinology 2002;143(2):596–606.Google Scholar
  46. (46).
    Falzon M, Du P. Enhanced growth of MCF-7 breast cancer cells overexpressing parathyroid hormone-related peptide. Endocrinology 2000;141(5):1882–92.Google Scholar
  47. (47).
    Luparello C, Romanotto R, Tipa A, Sirchia R, Olmo N, Lopez de Silanes I, Turnay J, Lizarbe MA, Stewart AF. Midregion parathyroid hormone-related protein inhibits growth and invasion in vitro and tumorigenesis in vivo of human breast cancer cells. J Bone Miner Res 2001;16(12):2173–81.Google Scholar
  48. (48).
    Wysolmerski JJ, Dann PR, Zelazny E, Dunbar ME, Insogna KL, Guise TA, Perkins AS. Overexpression of parathyroid hormone-related protein causes hypercalcemia but not bone metastases in a murine model of mammary tumorigenesis. J Bone Miner Res 2002;17(7):1164–70.Google Scholar
  49. (49).
    Maioli E, Fortino V. PTHrP on MCF-7 breast cancer cells: A growth factor or an antimitogenic peptide? Br J Cancer 2004;90(6):1293–94; author reply 1295.Google Scholar
  50. (50).
    Carroll KK, Jacobson EA, Eckel LA, Newmark HL. Calcium and carcinogenesis of the mammary gland. Am J Clin Nutr 1991;54(1 Suppl):206S–8S.Google Scholar
  51. (51).
    Xue L, Lipkin M, Newmark H, Wang J. Influence of dietary calcium and vitamin D on diet-induced epithelial cell hyperproliferation in mice. J Natl Cancer Inst 1999;91(2):176–81.Google Scholar
  52. (52).
    Lipkin M, Newmark HL. Vitamin D, calcium and prevention of breast cancer: A review. J Am Coll Nutr 1999;18(5 Suppl):392S–7S.Google Scholar
  53. (53).
    Luparello C, Santamaria F, Schilling T. Regulation of PTHrP and PTH/PTHrP receptor by extracellular Ca2+ concentration and hormones in the breast cancer cell line 8701-BC. Biol Chem 2000;381(4):303–08.Google Scholar
  54. (54).
    Guise TA. Parathyroid hormone-related protein and bone metastases. Cancer 1997;80(8 Suppl):1572–80.Google Scholar
  55. (55).
    Guise TA, Yinn JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, Yoneda T, Mundy GR. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 1996;98:1544–9.Google Scholar
  56. (56).
    Reinhardt TA, Lippolis JD, Shull GE, Horst RL. Null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2 impairs calcium transport into milk. J Biol Chem 2004;279:42369–73.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Division of Endocrinology and Metabolism, Department of Internal MedicineYale University School of MedicineNew Haven

Personalised recommendations