A gecko-like fractal receptor of a three-dimensional printing technology: a fractal oscillator


The gecko effect is famous for its smart adhesion, which is achieved by its fractal-like hierarchy from nano scale spatulas to micro scale seta. This paper designs a gecko-inspired receptor system for a three-dimensional printing technology. A fractal oscillator is established and solved for the fractal-like spring system, the experimental results show that any printed objects can be received smoothly without any morphology change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    X.X. Li, Y.Y. Li, Y. Li, Gecko-like adhesion in the electrospinning process. Results Phys. 16, 102899 (2020)

    Article  Google Scholar 

  2. 2.

    X.X. Li, J.H. He, Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: the formation mechanism of nanofiber membrane in the electrospinning. Results Phys. 12, 1405–1410 (2019)

    Article  Google Scholar 

  3. 3.

    C.X. Wang, L. Xu, G.L. Liu, Y. Ren, J.C. Lv, D.W. Gao, Z.Q. Lu, Smart adhesion by surface treatment: experimental and theoretical insights. Therm. Sci. 23(4), 2355–2363 (2019)

    Article  Google Scholar 

  4. 4.

    V. Alizadehyazdi, M. Bonthron, M. Spenko, Optimizing electrostatic cleaning for dust removal on gecko-inspired adhesives. J. Electrostat. 108, 103499 (2020)

    Article  Google Scholar 

  5. 5.

    H.Y. Song, A thermodynamic model for a packing dynamical system. Therm. Sci. 24(4), 2331–2335 (2020)

    Article  Google Scholar 

  6. 6.

    Q.P. Ji, J. Wang, L.X. Lu, C.F. Ge, Li-He’s modified homotopy perturbation method coupled with the energy method for the dropping shock response of a tangent nonlinear packaging system. J. Low Freq. Noise V. A. 2020, 1461348420914457

  7. 7.

    W.X. Kuang, J. Wang, C.X. Huang, L.X. Lu, D. Gao, Z.W. Wang, C.F. Ge, Homotopy perturbation method with an auxiliary term for the optimal design of a tangent nonlinear packaging system. J. Low Freq. Noise V. A. 38(3–4), 1075–1080 (2019)

    Article  Google Scholar 

  8. 8.

    H.Y. Song, A modification of homotopy perturbation method for a hyperbolic tangent oscillator arising in nonlinear packaging system. J. Low Freq. Noise V. A. 38(3–4), 914–917 (2019)

    Article  Google Scholar 

  9. 9.

    Y.T. Zuo, H.J. Liu, A fractal rheological model for sic paste using a fractal derivative. J. Appl. Comput. Mech. 6(SI), 1434–1439 (2020)

    Google Scholar 

  10. 10.

    Y.-T. Zuo, H.J-. Liu, Fractal approach to mechanical and electrical properties of graphene/sic composites. Facta Univ. Ser. Mech. Eng. (2021). https://doi.org/10.22190/FUME201212003Z

  11. 11.

    A. Gnatowski et al., The research of the thermal and mechanical properties of materials produced by 3D printing method. Therm. Sci. 23(4S), S1211–S1216 (2019)

    Article  Google Scholar 

  12. 12.

    L.Y. Xu, Y. Li, X.X. Li, J.H. He, Detection of cigarette smoke using a fiber membrane filmed with carbon nanoparticles and a fractal current law. Therm. Sci. 24(4), 2469–2474 (2020)

    Article  Google Scholar 

  13. 13.

    Z.P. Yang et al., A fractal model for pressure drop through a cigarette filter. Therm. Sci. 24(4), 2653–2659 (2020)

    Article  Google Scholar 

  14. 14.

    Y.K. Wu, Y. Liu, Fractal-like multiple jets in electrospinning process. Therm. Sci. 24(4), 2499–2505 (2020)

    Article  Google Scholar 

  15. 15.

    C.-H. He, J.H. He, H.M. Sedighi, Fangzhu (方诸): an ancient Chinese nanotechnology for water collection from air: History, mathematical insight, promises, and challenges. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6384

    Article  Google Scholar 

  16. 16.

    J.H. He, A new proof of the dual optimization problem and its application to the optimal material distribution of SiC/graphene composite. Rep. Mech. Eng. 1(1), 187–191 (2020). https://doi.org/10.31181/rme200101187h

    Article  Google Scholar 

  17. 17.

    C.-H. He, C. Liu, J.-H. He, A.H. Shirazi, H.M. Sedighi, Passive atmospheric water harvesting utilizing an ancient Chinese ink slab. Facta Universitatis-Ser. Mech. Eng. (2021). https://doi.org/10.22190/FUME201203001H

    Article  Google Scholar 

  18. 18.

    K.L. Wang, Effect of Fangzhu’s nano-scale surface morphology on water collection. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6569

    Article  Google Scholar 

  19. 19.

    J.-H. He, Y.O. El-Dib, Homotopy perturbation method for Fangzhu oscillator. J. Math. Chem. 58(10), 2245–2253 (2020)

    CAS  Article  Google Scholar 

  20. 20.

    J.H. He, Q.T. Ain, New promises and future challenges of fractal calculus: from two-scale thermodynamics to fractal variational principle. Therm. Sci. 24(2A), 659–681 (2020)

    Article  Google Scholar 

  21. 21.

    Q.T. Ain, J.H. He, On two-scale dimension and its applications. Therm. Sci. 23(3), 1707–1712 (2019)

    Article  Google Scholar 

  22. 22.

    J.H. He, Fractal calculus and its geometrical explanation. Results Phys. 10, 272–276 (2018)

    Article  Google Scholar 

  23. 23.

    Q.T. Ain, J.H. He, N. Anjum, M. Ali, The fractional complex transform: a novel approach to the time-fractional schrodinger equation. Fractals 28(7), 2050141 (2020)

  24. 24.

    J.H. He, Thermal science for the real world: reality and challenge. Therm. Sci. 24(4), 2289–2294 (2020)

    Article  Google Scholar 

  25. 25.

    K.L. Wang, C.F. Wei, A powerful and simple frequency formula to nonlinear fractal oscillators. J. Low Freq. Noise V. A. 1461348420947832 (2020)

  26. 26.

    D. Tian, Q.T. Ain, N. Anjum, Fractal N/MEMS: from pull-in instability to pull-in stability. Fractals (2020). https://doi.org/10.1142/S0218348X21500304

    Article  Google Scholar 

  27. 27.

    A. Elias-Zuniga, L.M. Palacios-Pineda, I.H. Jimenez-Cedeno, O. Martinez-Romero, D.O. Trejo, Equivalent power-form representation of the fractal Toda oscillator. Fractals (2020). https://doi.org/10.1142/S0218348X21500341

    Article  Google Scholar 

  28. 28.

    J.H. He, On the fractal variational principle for the Telegraph equation. Fractals (2021). https://doi.org/10.1142/S0218348X21500225

    Article  Google Scholar 

  29. 29.

    J.H. He, Y.O. El-Dib, The reducing rank method to solve third-order Duffing equation with the homotopy perturbation. Numer. Meth. Part. D. E. (2020). https://doi.org/10.1002/num.22609

    Article  Google Scholar 

  30. 30.

    D.N YU, J.H. He, A.G. Garcia, Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators. J. Low Freq. Noise Vibration Active Control 38(3–4), 1540–1554 (2019)

  31. 31.

    J.H. He, Y.O. El-Dib, Periodic property of the time-fractional Kundu-Mukherjee-Naskar equation. Results Phys. 19, 103345 (2020)

    Article  Google Scholar 

  32. 32.

    N. Anjum, J.-H. He, Two modifications of the homotopy perturbation method for nonlinear oscillators. J. Appl. Comput. Mech. 6, 1420–1425 (2020). https://doi.org/10.22055/JACM.2020.34850.2482

    Article  Google Scholar 

  33. 33.

    J.H. He, Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20(10), 1141–1199 (2006)

    Article  Google Scholar 

  34. 34.

    J.-H. He, W.-F. Hou, N. Qie, K.A. Gepreel, A.H. Shirazi, H.M. Sedighi, Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators. Facta Universitatis Ser. Mech. Eng. (2021). https://doi.org/10.22190/fume201205002H

    Article  Google Scholar 

  35. 35.

    N. Qie, W.-F. Hou, J.-H. He, The fastest insight into the large amplitude vibration of a string. Rep. Mech. Eng. 2(1), 1–5 (2020). https://doi.org/10.31181/rme200102001q

    Article  Google Scholar 

  36. 36.

    J.H. He, The simpler, the better: analytical methods for nonlinear oscillators and fractional oscillators. J. Low Freq. Noise V. A. 38(3–4), 1252–1260 (2019)

    Article  Google Scholar 

  37. 37.

    J.H. He, The simplest approach to nonlinear oscillators. Results Phys. 15, 102546 (2019). https://doi.org/10.1016/j.rinp.2019.102546

    Article  Google Scholar 

  38. 38.

    Y. Wang, S.W. Yao, H.W. Yang, A fractal derivative model for snow’s thermal insulation property. Therm. Sci. 23(4), 2351–2354 (2019)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yuting Zuo.

Ethics declarations

Conflict of interest

The author declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zuo, Y. A gecko-like fractal receptor of a three-dimensional printing technology: a fractal oscillator. J Math Chem (2021). https://doi.org/10.1007/s10910-021-01212-y

Download citation


  • Smart adhesion
  • Smooth landing
  • Hierarchical surface
  • Fractal geometry
  • 3D printing
  • Two-scale fractal calculus
  • Duffing oscillator
  • Frequency formulation
  • Exact printing