Richardson-Gaudin geminal wavefunctions in a Slater determinant basis

Abstract

Geminal wavefunctions have been employed to model strongly-correlated electrons. These wavefunctions represent products of weakly-correlated pairs of electrons and reasonable approximations are computable with polynomial cost. In particular, Richardson-Gaudin states have recently been employed as a variational ansatz. This contribution serves to explain the Richardson-Gaudin wavefunctions in the conventional language of quantum chemistry.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A.C. Hurley, J. Lennard-Jones, J.A. Pople, Proc. R. Soc. A220, 446 (1953)

    Google Scholar 

  2. 2.

    D.M. Silver, J. Chem. Phys. 50, 5108 (1969)

    CAS  Google Scholar 

  3. 3.

    D.M. Silver, E.L. Mehler, K. Ruedenberg, J. Chem. Phys. 52, 1174 (1970)

    CAS  Google Scholar 

  4. 4.

    A.J. Coleman, Int. J. Quantum Chem. 63, 23 (1997)

    CAS  Google Scholar 

  5. 5.

    P.R. Surján, An Introduction to the Theory of Geminals (Springer, Berlin, 1999)

    Google Scholar 

  6. 6.

    M. Kobayashi, A. Szabados, H. Nakai, P. Surjan, J. Chem. Theory Comput. 6, 2024 (2010)

    CAS  PubMed  Google Scholar 

  7. 7.

    P.R. Surján, Á. Szabados, P. Jeszenski, T. Zoboki, J. Math. Chem. 50, 534 (2012)

    Google Scholar 

  8. 8.

    E. Neuscamman, Phys. Rev. Lett. 109, 203001 (2012)

    PubMed  Google Scholar 

  9. 9.

    P.A. Limacher, P.W. Ayers, P.A. Johnson, S. De Baerdemacker, D. Van Neck, P. Bultinck, J. Chem. Theory Comput. 9, 1394 (2013)

    CAS  PubMed  Google Scholar 

  10. 10.

    P.A. Johnson, P.W. Ayers, P.A. Limacher, S. De Baerdemacker, D. Van Neck, P. Bultinck, Comput. Theor. Chem. 1003, 101 (2013)

    CAS  Google Scholar 

  11. 11.

    T. Stein, T.M. Henderson, G.E. Scuseria, J. Chem. Phys. 140, 214113 (2014)

    PubMed  Google Scholar 

  12. 12.

    K. Boguslawski, P. Tecmer, P.W. Ayers, P. Bultinck, S. De Baerdemacker, D. Van Neck, Phys. Rev. B 98, 201106(R) (2014)

    Google Scholar 

  13. 13.

    K. Boguslawski, P. Tecmer, P. Bultinck, S. De Baerdemacker, D. Van Neck, P.W. Ayers, J. Chem. Theory Comput. 10, 4873 (2014)

    CAS  PubMed  Google Scholar 

  14. 14.

    K. Boguslawski, P. Tecmer, P.A. Limacher, P.A. Johnson, P.W. Ayers, P. Bultinck, S. De Baerdemacker, D. Van Neck, J. Chem. Theory Comput. 140, 214114 (2014)

    Google Scholar 

  15. 15.

    P. Tecmer, K. Boguslawski, P.A. Johnson, M. Chan, T. Verstraelen, P.W. Ayers, J. Phys. Chem. A 118, 9058 (2014)

    CAS  PubMed  Google Scholar 

  16. 16.

    T.M. Henderson, G.E. Scuseria, J. Dukelsky, A. Signoracci, T. Duguet, Phys. Rev. C 89, 054305 (2014)

    Google Scholar 

  17. 17.

    T.M. Henderson, I.W. Bulik, T. Stein, G.E. Scuseria, J. Chem. Phys. 141, 244104 (2014)

    PubMed  Google Scholar 

  18. 18.

    J.J. Shepherd, T.M. Henderson, G.E. Scuseria, J. Chem. Phys. 144, 094112 (2014)

    Google Scholar 

  19. 19.

    I.W. Bulik, T.M. Henderson, G.E. Scuseria, J. Chem. Theory Comput. 11, 3171 (2015)

    CAS  PubMed  Google Scholar 

  20. 20.

    E. Pastorczak, K. Pernal, Phys. Chem. Chem. Phys. 17, 8622 (2015)

    CAS  PubMed  Google Scholar 

  21. 21.

    R.W. Richardson, Phys. Lett. 3, 277 (1963)

    Google Scholar 

  22. 22.

    R.W. Richardson, N. Sherman, Nucl. Phys. 52, 221 (1964)

    Google Scholar 

  23. 23.

    R.W. Richardson, J. Math. Phys. 6, 1034 (1965)

    Google Scholar 

  24. 24.

    M. Gaudin, J. Phys. 37, 1087 (1976)

    Google Scholar 

  25. 25.

    P.A. Johnson, C.-É. Fecteau, F. Berthiaume, S. Cloutier, L. Carrier, M. Gratton, P. Bultinck, S. De Baerdemacker, D. Van Neck, P. Limacher, P.W. Ayers, J. Chem. Phys. 153, 104110 (2020)

    CAS  PubMed  Google Scholar 

  26. 26.

    S. De Baerdemacker, P.W. Claeys, J.-S. Caux, D. Van Neck, P.W. Ayers, arXiv:1712.01673

  27. 27.

    P.W. Claeys, J.-S. Caux, D. Van Neck, S. De Baerdemacker, Phys. Rev. B 96, 155149 (2017)

    Google Scholar 

  28. 28.

    J. Dukelsky, S. Pittel, G. Sierra, Rev. Mod. Phys. 76, 643 (2004)

    CAS  Google Scholar 

  29. 29.

    G. Ortiz, R. Somma, J. Dukelsky, S. Rombouts, Nucl. Phys. B 707, 421 (2005)

    Google Scholar 

  30. 30.

    C.-É. Fecteau, H. Fortin, S. Cloutier, P.A. Johnson, J. Chem. Phys. 153, 164117 (2020)

    CAS  PubMed  Google Scholar 

  31. 31.

    T.M. Henderson, G.E. Scuseria, J. Chem. Phys. 151, 051101 (2019)

    Google Scholar 

  32. 32.

    A. Khamoshi, T.M. Henderson, G.E. Scuseria, J. Chem. Phys. 151, 184103 (2019)

    PubMed  Google Scholar 

  33. 33.

    T.M. Henderson, G.E. Scuseria, J. Chem. Phys. 153, 084111 (2020)

    PubMed  Google Scholar 

  34. 34.

    R. Dutta, T.M. Henderson, G.E. Scuseria, J. Chem. Theory Comput. 16, 6358 (2020)

    CAS  PubMed  Google Scholar 

  35. 35.

    G. Harsha, T.M. Henderson, G.E. Scuseria, J. Chem. Phys. 153, 124115 (2020)

    CAS  PubMed  Google Scholar 

  36. 36.

    A. Khamoshi, F.A. Evangelista, G.E. Scuseria, Quantum Sci. Technol. 6, 014004 (2020)

    Google Scholar 

  37. 37.

    H. Minc. Permanents. Addison-Wesley, Reading, (1978)

  38. 38.

    H. J. Ryser. Combinatorial Mathematics, volume 14. (1963)

  39. 39.

    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957)

    CAS  Google Scholar 

  40. 40.

    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    CAS  Google Scholar 

  41. 41.

    N.A. Slavnov, Theor. Math. Phys. 79, 502 (1989)

    Google Scholar 

  42. 42.

    S. Belliard, N.A. Slavnov, J. High Energy Phys. 2019, 103 (2019)

    Google Scholar 

  43. 43.

    H.-Q. Zhou, J. Links, R.H. McKenzie, M.D. Gould, Phys. Rev. B 65, 060502 (2002)

    Google Scholar 

  44. 44.

    A. Faribault, P. Calabrese, J.-S. Caux, Phys. Rev. B 77, 064503 (2008)

    Google Scholar 

  45. 45.

    A. Faribault, P. Calabrese, J.-S. Caux, Physical Review B 81, 174507 (2010)

    Google Scholar 

  46. 46.

    G. Gorohovsky, E. Bettelheim, Phys. Rev. B 84, 224503 (2011)

    Google Scholar 

  47. 47.

    P.W. Claeys, D. Van Neck, S. De Baerdemacker, SciPost Phys. 3, 028 (2017)

    Google Scholar 

  48. 48.

    C.W. Borchardt, J. für die Reine Angew. Math. 53, 193 (1857)

    Google Scholar 

  49. 49.

    R. Vein, P. Dale, Determinants and Their Applications in Mathematical Physics (Springer-Verlag, New York, 1999)

    Google Scholar 

  50. 50.

    T. Muir, Proc. R. Soc. Edinb. 22, 134 (1897)

    Google Scholar 

  51. 51.

    L. Zhao, E. Neuscamman, J. Chem. Theory Comput. 12, 5841 (2016)

    CAS  PubMed  Google Scholar 

  52. 52.

    T. D. Kim, R. A. Miranda Quintana, P. W. Ayers. Computational and Theoretical Chemistry, submitted

Download references

Acknowledgements

We acknowledge support from the Natural Sciences and Engineering Research Council of Canada (NSERC) as well as the fonds de recherche du Québec - nature et technologies (FRQNT).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul Andrew Johnson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fecteau, CÉ., Berthiaume, F., Khalfoun, M. et al. Richardson-Gaudin geminal wavefunctions in a Slater determinant basis. J Math Chem 59, 289–301 (2021). https://doi.org/10.1007/s10910-020-01197-0

Download citation

Keywords

  • Geminal wavefunctions
  • Strong electron correlation
  • Richardson-Gaudin wavefunctions