Kudryashov and Sinelshchikov’s method for solving the radial oscillation problem of multielectron bubbles in liquid helium

Abstract

This work investigates the exact general analytical solution of the Rayleigh equation for multielectron bubbles in liquid helium using Kudryashov and Sinelshchikov’s method. We firstly obtain its first integral involving three negative exponential powers, then a specific Sundman transformation is proper established to transform it into an equation for the elliptic functions, and finally the analytical solution expressed by Weierstrass elliptic function is constructed appropriately. As applications, the derived analytical solution is used to test numerical algorithm, and also to construct the analytical expressions of the bubble oscillation period and the derivatives of the bubble radius. Further, the influence of the pressure on the helium is also discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    L. Rayleigh, VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag. 34, 94–98 (1917)

    Article  Google Scholar 

  2. 2.

    M.S. Plesset, A. Prosperetti, Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145–185 (1977)

    CAS  Article  Google Scholar 

  3. 3.

    C.E. Brennen, Cavitation and Bubble Dynamics, Oxford Engineering Science Series, vol. 44 (Oxford University Press, New York, 1995)

    Google Scholar 

  4. 4.

    A. Prosperetti, Bubbles. Phys. Fluids 16, 1852–1865 (2004)

    CAS  Article  Google Scholar 

  5. 5.

    M.A. López, Raquel Martínez, A note on the generalized Rayleigh equation: limit cycles and stability. J. Math. Chem. 51, 1164–1169 (2013)

    Article  Google Scholar 

  6. 6.

    K. Yasui, T. Tuziuti, J. Lee, T. Kozuka, A. Towata, Y. Iida, The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J. Chem. Phys. 128, 184705 (2008)

    Article  Google Scholar 

  7. 7.

    K. Yasui, T. Tuziuti, Y. Iida, H. Mitome, Theoretical study of the ambient-pressure dependence of sonochemical reactions. Ultrason. Sonochem. 119, 346–356 (2003)

    CAS  Google Scholar 

  8. 8.

    Z. Xu, Numerical simulation of the coalescence of two bubbles in an ultrasound field. Ultrasonics Sonochem. 49, 277–282 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    J. Tempere, I.F. Silvera, S. Rekhi, J.T. Devreese, Sonoluminescence and collapse dynamics of multielectron bubbles in helium. Phys. Rev. B 70, 224303 (2004)

    Article  Google Scholar 

  10. 10.

    J. Tempere, I.F. Silvera, J.T. Devreese, Multielectron bubbles in helium as a paradigm for studying electrons on surfaces with curvature. Surf. Sci. Rep. 62, 159–217 (2007)

    CAS  Article  Google Scholar 

  11. 11.

    M.M. Salomaa, G.A. Williams, Structure and stability of multielectron bubbles in liquid helium. Phys. Rev. Lett. 47, 1730–1733 (1981)

    CAS  Article  Google Scholar 

  12. 12.

    S.T. Hannahs, G.A. Williams, M.M. Salomaa, Acoustic oscillations of multielectron bubbles in liquid helium, in Proceedings of the IEEE Ultrasonics Symposium, vol. 1 (1995), pp. 635–640

  13. 13.

    D. Obreschkow, M. Bruderer, M. Farhat, Analytical approximations for the collapse of an empty spherical bubble. Phys. Rev. E 85, 066303 (2012)

    CAS  Article  Google Scholar 

  14. 14.

    A.R. Klotz, Bubble dynamics in \(N\) dimensions. Phys. Fluids 25, 082109 (2013)

    Article  Google Scholar 

  15. 15.

    F.A. Godínez, M.A. Escobedo, M. Navarrete, Homotopy analysis method for the Rayleigh equation governing the radial dynamics of a multielectron bubble. J. Appl. Math. 2012, 591058 (2012)

    Article  Google Scholar 

  16. 16.

    Z. Wang, Y.P. Qin, L. Zou, Analytical solutions of the Rayleigh–Plesset equation for N-dimensional spherical bubbles. Sci. China Phys. Mech. Astron. 60, 104721 (2017)

    Article  Google Scholar 

  17. 17.

    N.A. Kudryashov, D.I. Sinelshchikov, Analytical solutions for problems of bubble dynamics. Phys. Lett. A 379, 798–802 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    S.C. Mancas, H.C. Rosu, Evolution of spherical cavitation bubbles: parametric and closed-form solutions. Phys. Fluids 28, 022009 (2016)

    Article  Google Scholar 

  19. 19.

    R.A. Van Gorder, Dynamics of the Rayleigh–Plesset equation modelling a gas-filled bubble immersed in an incompressible fluid. J. Fluid Mech. 807, 478–508 (2016)

    Article  Google Scholar 

  20. 20.

    Y.P. Qin, Z. Wang, L. Zou, M.F. He, Parametric analytical solution for the \(N\)-dimensional Rayleigh equation. Appl. Math. Lett. 76, 8–13 (2018)

    Article  Google Scholar 

  21. 21.

    Y.P. Qin, Z. Wang, L. Zou, M.F. He, Semi-numerical, semi-analytical approximations of the Rayleigh equation for gas-filled hyper-spherical bubble. Int. J. Comput. Methods 16, 1850094 (2019)

    Article  Google Scholar 

  22. 22.

    Y.P. Qin, Analytical solution for the collapse motion of an empty hyper-spherical bubble in \(N\) dimensions. Phys. Lett. A 384, 126142 (2020)

    CAS  Article  Google Scholar 

  23. 23.

    N.A. Kudryashov, D.I. Sinelshchikov, On the connection of the quadratic Lienard equation with an equation for the elliptic functions. Regul. Chaot. Dyn. 20, 486–496 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Scientific Research Projects of the Higher Education Institutions of Henan Province (20B410001, 19B460003), the Key Scientific and Technological Project of Henan Province (192102210222), and the Doctoral Fund of Henan Institute of Technology (KQ1860).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yupeng Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Lou, Q., Wang, Z. et al. Kudryashov and Sinelshchikov’s method for solving the radial oscillation problem of multielectron bubbles in liquid helium. J Math Chem (2020). https://doi.org/10.1007/s10910-020-01145-y

Download citation

Keywords

  • Rayleigh equation
  • Multielectron bubble in liquid helium
  • Analytical solution
  • Sundman transformation
  • Weierstrass elliptic function