An efficient spline scheme of the coupled nonlinear Schrödinger equations

Abstract

We construct an efficient numerical scheme for the coupled nonlinear Schrödinger equations by using adaptive spline function. We use the Crank–Nicolson scheme to discretize the time variables and the adaptive spline function to discretize spatial variables. The problem is reduced to a system of matrix equation iteration. We theoretically give stability analysis and numerically prove the law of conservation of energy. Numerical simulations are performed to demonstrate the effectiveness of the method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    C.R. Menyuk, Nonlinear pulse propagation in birefringent optical fibers. IEEE J. Quantum Electron. 23(2), 174–176 (1987)

    Article  Google Scholar 

  2. 2.

    S.J. Garth, C. Pask, Nonlinear effects in elliptical-core few-mode optical fiber. J. Opt. Soc. Am. B 9, 243 (1992)

    CAS  Article  Google Scholar 

  3. 3.

    S.B. Leble, B. Reichel, Mode interaction in few-mode optical fibers with Kerr effect. J. Mod. Opt. 55, 1–11 (2008)

    CAS  Article  Google Scholar 

  4. 4.

    S.B. Leble, B. Reichel, Coupled nonlinear Schrödinger equations in optical fibers theory: from general aspects to solitonic ones. Eur. Phys. J. Spec. Top. 173, 5–55 (2009)

    Article  Google Scholar 

  5. 5.

    R. Radhakrishnan, M. Lakshmanan, J. Hietarinta, Inelastic collision and switching of coupled bright solitons in optical fibers. Phys. Rev. E 56, 2213–2216 (1997)

    CAS  Article  Google Scholar 

  6. 6.

    K.W. Chow, Periodic waves for a system of coupled, higher order nonlinear Schrödinger equations with third order dispersion. Phys. Lett. A 308, 426–431 (2003)

    CAS  Article  Google Scholar 

  7. 7.

    A. Uthayakumar, Y.G. Han, S.B. Lee, Soliton solutions of coupled in homogeneous nonlinear Schrödinger equation in plasma. Chaos Solitons Fractals 29, 916–919 (2006)

    Article  Google Scholar 

  8. 8.

    J.U. Kang, G.I. Stegeman, J.S. Aitchison, N.N. Akhmediev, Observation of Manakov spatial solitons in ALGaAs planar waveguides. Phys. Rev. Lett. 76, 3699–3702 (1996)

    CAS  Article  PubMed Central  Google Scholar 

  9. 9.

    M.S. Ismail, T.R. Taha, A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation. Math. Comput. Simul. 74, 302–311 (2007)

    Article  Google Scholar 

  10. 10.

    M.S. Ismail, T.R. Taha, Numerical simulation of coupled nonlinear Schrödinger equation. Math. Comput. Simul. 56, 547–562 (2001)

    Article  Google Scholar 

  11. 11.

    A. Aydin, B. Karasozen, Multisymplectic integration of coupled nonlinear Schrödinger system with soliton solutions. Int. J. Comput. Math. 86, 864–882 (2009)

    Article  Google Scholar 

  12. 12.

    A. Aydin, B. Karasozen, Symplectic and multisymplectic methods for the coupled nonlinear Schrödinger equations with periodic solutions. Comput. Phys. Commun. 177, 566–583 (2007)

    CAS  Article  Google Scholar 

  13. 13.

    Y. Chen, H. Zhu, S. Song, Multisymplectic splitting method for the coupled nonlinear Schrödinger equation. Comput. Phys. Commun. 181, 1231–1241 (2010)

    CAS  Article  Google Scholar 

  14. 14.

    J.B. Chen, M.Z. Qin, Y.F. Tang, Symplectic and multisymplectic method for the nonlinear Schrödinger equation. Comput. Math. Appl. 43, 1095–1106 (2002)

    Article  Google Scholar 

  15. 15.

    J.Q. Sun, X.Y. Gu, Z.Q. Ma, Numerical study of the soliton waves of the coupled nonlinear Schrödinger system. Physica D 196, 311–328 (2004)

    Article  Google Scholar 

  16. 16.

    J.Q. Sun, M.Z. Qin, Multisymplectic methods for the coupled 1D nonlinear Schrödinger system. Comput. Phys. Commun. 155, 221–235 (2003)

    CAS  Article  Google Scholar 

  17. 17.

    S.C. Tsang, K.W. Chow, The evolution of periodic waves of the coupled nonlinear Schrödinger equations. Math. Comput. Simul. 66, 551–564 (2004)

    Article  Google Scholar 

  18. 18.

    L. Xu, Variational principles for coupled nonlinear Schrödinger equations. Phys. Lett. A. 359, 627–629 (2006)

    CAS  Article  Google Scholar 

  19. 19.

    N.H. Sweilam, R.F. Al-Bar, Variational iteration method for coupled nonlinear Schrödinger equations. Comput. Math. Appl. 54, 993–999 (2007)

    Article  Google Scholar 

  20. 20.

    M.S. Ismail, Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method. Math. Comput. Simul. 78, 532–547 (2008)

    Article  Google Scholar 

  21. 21.

    T.R. Taha, X. Xu, Parallel split-step Fourier methods for the coupled nonlinear Schrödinger type equations. J. Supercomput. 32, 5–23 (2005)

    Article  Google Scholar 

  22. 22.

    A.D. Bandrauk, H. Shen, Exponential split operator methods for solving coupled time dependent Schrödinger equations. J. Chem. Phys. 99, 1185–1193 (1993)

    CAS  Article  Google Scholar 

  23. 23.

    A.D. Bandrauk, H. Shen, Higher-order split-step exponential methods for solving coupled nonlinear Schrödinger equations. J. Phys. A Math. Gen. 27, 7147–7155 (1994)

    Article  Google Scholar 

  24. 24.

    M. Dehghan, A. Taleei, A Chebyshev pseudospectral multidomain method for the soliton solution of coupled nonlinear Schrödinger equations. Comput. Phys. Commun. 182, 2519–2529 (2011)

    CAS  Article  Google Scholar 

  25. 25.

    Z. Wensheng, Finite Difference Methods for Partial Differential Equations in Science Computation (Higher Education Press, Beijing, 2013). (in Chinese)

    Google Scholar 

  26. 26.

    I. Alolyan, T.E. Simos, C. Tsitouras, Interpolants for sixth-order Numerov-type methods. Math. Methods Appl. Sci. 42, 7349–7358 (2019)

    Article  Google Scholar 

  27. 27.

    A.M. Medvedev, T.E. Simos, C. Tsitouras, Local interpolants for Numerov-type methods and their implementation in variable step schemes. Math. Methods Appl. Sci. 42, 7047–7058 (2019)

    Article  Google Scholar 

  28. 28.

    M.A. Medvedev, T.E. Simos, Low-order, P-stable, two-step methods for use with lax accuracies. Math. Methods Appl. Sci. 42, 6301–6314 (2019)

    Article  Google Scholar 

  29. 29.

    J. Fang, C. Liu, T.E. Simos, I.T. Famelis, Neural network solution of single-delay differential equations. Mediterr. J. Math. 30, 1–15 (2020)

    Google Scholar 

  30. 30.

    V.N. Kovalnogov, T.E. Simos, C. Tsitouras, Ninth-order, explicit, two-step methods for second-order inhomogeneous linear IVPs. Math. Methods Appl. Sci. 43, 4918–4926 (2020)

    Google Scholar 

  31. 31.

    Z. Kalogiratou, T. Monovasilis, T.E. Simos, Two derivative Runge Kutta methods with optimal phase properties. Math. Methods Appl. Sci. 43, 1267–1277 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the editors and reviewers for their valuable comments and suggestions.

Funding

This work was supported by the Natural Science Foundation of Guangdong [2015A030313827] and the Key Subject Program of Lingnan Normal University [No. 1171518004].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bin Lin.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, B. An efficient spline scheme of the coupled nonlinear Schrödinger equations. J Math Chem (2020). https://doi.org/10.1007/s10910-020-01143-0

Download citation

Keywords

  • Coupled nonlinear Schrödinger equation
  • Conserved quantities
  • Adaptive cubic spline