Skip to main content
Log in

Recasting the mass-action rate equations of open chemical reaction networks into a universal quadratic format

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Recasting the rate equations of mass-action chemical kinetics into universal formats is a potentially useful strategy to rationalize typical features that are observed in the space of the species concentrations. For example, a remarkable feature is the appearance of the so-called slow manifolds (subregions of the concentration space where the trajectories bundle), whose detection can be exploited to simplify the description of the slow part of the kinetics via model reduction and to understand how the chemical network approaches the stationary state. Here we focus on generally open chemical reaction networks with continuous injection of species at constant rates, that is, the situation of idealized biochemical networks and microreactors under well-mixing conditions and externally controllable input of chemicals. We show that a unique format of pure quadratic ordinary differential equations can be achieved, regardless of the nonlinearity of the kinetic scheme, by means of a suitable change and extension of the set of dynamical variables. Then we outline some possible employments of such a format, with special emphasis on a low-computational-cost strategy to localize the slow manifolds which are indeed observed also for open systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. DRIMAK is distributed under the General Public License v2.0. Software and documentation are available at: http://www.chimica.unipd.it/licc/software.html.

  2. DVODE is freely available at https://computation.llnl.gov/casc/odepack/. Last viewed 7 June 2018.

References

  1. K.J. Laidler, Chemical Kinetics, 3rd edn. (Harper Collins Publishers, New York, 1987)

    Google Scholar 

  2. R. Aris, Prolegomena to the rational analysis of systems of chemical reactions. Arch. Ration. Mech. Anal. 19(2), 81–98 (1965)

    Article  Google Scholar 

  3. P. Nicolini, D. Frezzato, Features in chemical kinetics. I. Signatures of self-emerging dimensional reduction from a general formal of the evolution law. J. Chem. Phys. 138(23), 234101 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. P. Nicolini, D. Frezzato, Features in chemical kinetics. II. A self-emerging definition of slow manifolds. J. Chem. Phys. 138(23), 234102 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. A. Ceccato, P. Nicolini, D. Frezzato, Features in chemical kinetics. III. Attracting subspaces in a hyper-spherical representation of the reactive system. J. Chem. Phys. 143(22), 224109 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. A. Ceccato, P. Nicolini, D. Frezzato, A low-computational-cost strategy to localize points in the slow manifold proximity for isothermal chemical kinetics. Int. J. Chem. Kinet. 49, 477–493 (2017)

    Article  CAS  Google Scholar 

  7. G. Szederkényi, A. Magyar, K.M. Hangos, Analysis and Control of Polynomial Dynamic Models with Biological Applications (Academic Press, New York, 2018)

    Google Scholar 

  8. Y. Elani, R.V. Law, O. Ces, Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat. Commun. 5, 5305 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. H. Song, D.L. Chen, R.F. Ismagilov, Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006)

    Article  CAS  Google Scholar 

  10. P.-Y. Bolinger, D. Stamou, H. Vogel, Integrated nanoreactor systems: triggering the release and mixing of compounds inside single vesicles. J. Am. Chem. Soc. 126, 8594–8595 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. G. Ragazzon, L. Prins, Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. M. Peschel, W. Mende, The Predator-Prey Model: Do We Live in a Volterra World? (Spinger, New York, 1986)

    Google Scholar 

  13. B. Hernández-Bermejo, V. Fairén, Nonpolynomial vector fields under the Lotka–Volterra normal form. Phys. Lett. A 206, 31–37 (1995)

    Article  Google Scholar 

  14. L. Brenig, A. Goriely, Universal canonical forms for time-continuous dynamical systems. Phys. Rev. A 40, 4119–4122 (1989)

    Article  CAS  Google Scholar 

  15. J.L. Gouzé, Transformation of polynomial differential systems in the positive orthant. Technical report, Sophia-vol. 06561 (Valbonne, France, 1996)

  16. V. Fairén, B. Hernández-Bermejo, Mass action law conjugate representation for general chemical mechanisms. J. Phys. Chem. 100, 19023–19028 (1996)

    Article  Google Scholar 

  17. B. Hernández-Bermejo, Stability conditions and Liapunov functions for quasi-polynomial systems. Appl. Math. Lett. 15, 25–28 (2002)

    Article  Google Scholar 

  18. A. Figueiredo, I.M. Gléria, T.M. Rocha Filho, Boundedness of solutions and Lyapunov functions in quasi-polynomial systems. Phys. Lett. A 268, 335–341 (2000)

    Article  CAS  Google Scholar 

  19. I.M. Gléria, A. Figueiredo, T.M. Rocha Filho, On the stability of a class of general non-linear systems. Phys. Lett. A 291, 11–16 (2001)

    Article  Google Scholar 

  20. I.M. Gléria, A. Figueiredo, T.M. Rocha Filho, Stability properties of a general class of nonlinear dynamical systems. J. Phys. A Math. Gen. 34(17), 3561–3575 (2001)

    Article  Google Scholar 

  21. I.M. Gléria, A. Figueiredo, T.M. Rocha Filho, A numerical method for the stability analysis of quasi-polynomial vector fields. Nonlinear Anal. 52, 329–342 (2003)

    Article  Google Scholar 

  22. T.M. Rocha Filho, I.M. Gléria, A. Figueiredo, L. Brenig, The Lotka–Volterra canonical format. Ecol. Model. 183, 95–106 (2005)

    Article  Google Scholar 

  23. I. Gléria, L. Brenig, T.M. Rocha Filho, A. Figueiredo, Stability properties of nonlinear dynamical systems and evolutionary stable states. Phys. Lett. A 381, 954–957 (2017)

    Article  CAS  Google Scholar 

  24. I. Gléria, L. Brenig, T.M. Rocha Filho, A. Figueiredo, Permanence and boundedness of solutions of quasi-polynomial systems. Phys. Lett. A 381, 2149–2152 (2017)

    Article  CAS  Google Scholar 

  25. M. Motee, B. Bahmieh, M. Khammash, Stability analysis of quasi-polynomial dynamical systems with applications to biological network models. Automatica 48, 2945–2950 (2012)

    Article  Google Scholar 

  26. A. Magyar, G. Szederkényi, K.M. Hangos, Globally stabilizing feedback control of process systems in generalized Lotka–Volterra form. J. Process Control 18, 80–91 (2008)

    Article  CAS  Google Scholar 

  27. A. Magyar, K.M. Hangos, Globally stabilizing state feedback control design for Lotka–Volterra systems based on underlying linear dynamics. IFAC-PapersOnLine 48–11, 1000–1005 (2015)

    Article  Google Scholar 

  28. L. Brenig, Reducing nonlinear dynamical systems to canonical forms. Philos. Trans. R. Soc. A 376, 20170384 (2018)

    Article  Google Scholar 

  29. P.N. Brown, G.D. Byrne, A.C. Hindmarsh, VODE: a variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10, 1038–1051 (1989)

    Article  Google Scholar 

  30. M.R. Roussel, S.J. Fraser, On the geometry of transient relaxation. J. Chem. Phys. 94(11), 7106–7113 (1991)

    Article  CAS  Google Scholar 

  31. A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and Data Analysis (Springer, Berlin, 2011)

    Google Scholar 

  32. A.N. Al-Khateeb, J.M. Powers, S. Paolucci, A.J. Sommese, J.A. Diller, J.D. Hauenstein, J.D. Mengers, One-dimensional slow invariant manifolds for spatially homogenous reactive system. J. Chem. Phys. 131(2), 024118 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. R.T. Skodje, M.J. Davis, Geometrical simplification of complex kinetic systems. J. Phys. Chem. A 105(45), 10356–10365 (2001)

    Article  CAS  Google Scholar 

  34. D. Lebiedz, J. Siehr, J. Unger, A variational principle for computing slow invariant manifolds in dissipative dynamical systems. SIAM J. Sci. Comput. 33(2), 703–720 (2011)

    Article  Google Scholar 

  35. D. Lebiedz, J. Unger, On fundamental unifying concepts for trajectory-based slow invariant attracting manifold computation in multiscale models of chemical kinetics. Math. Comput. Model. Dyn. 22, 87–112 (2016)

    Article  Google Scholar 

  36. C.K.R.T. Jones, Geometric singular perturbation theory, in Dynamical Systems, vol. 1609, ed. by L. Arnold (Springer, Berlin, 1994)

    Google Scholar 

  37. S.H. Lam, D.A. Goussis, The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26(4), 461 (1994)

    Article  CAS  Google Scholar 

  38. A. Zagaris, H.G. Kaper, T.J. Kaper, Analysis of the computational singular perturbation reduction method for chemical kinetics. Nonlinear Sci. 14(1), 59 (2004)

    Article  CAS  Google Scholar 

  39. M.R. Roussel, S.J. Fraser, Invariant manifold methods for metabolic model reduction. Chaos 11(1), 196 (2001)

    Article  CAS  PubMed  Google Scholar 

  40. U. Maas, S.B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239–264 (1992)

    Article  CAS  Google Scholar 

  41. D. Lebiedz, J. Siehr, A continuation method for the efficient solution of parametric optimization problems in kinetic model reduction. SIAM J. Sci. Comput. 35(3), A1584–A1603 (2013)

    Article  Google Scholar 

  42. S.J. Fraser, The steady state and equilibrium approximations: a geometric picture. J. Chem. Phys. 88(8), 4732–4738 (1988)

    Article  CAS  Google Scholar 

  43. A.N. Gorban, I.V. Karlin, Method of invariant manifold for chemical kinetics. Chem. Eng. Sci. 58, 4751 (2003)

    Article  CAS  Google Scholar 

  44. D. Lebiedz, Computing minimal entropy production trajectories: an approach to model reduction in chemical kinetics. J. Chem. Phys. 120(15), 6890 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. V. Reinhardt, M. Winckler, D. Lebiedz, Approximation of slow attracting manifolds in chemical kinetics by trajectory-based optimization approaches. J. Phys. Chem. A 112(8), 1712 (2008)

    Article  CAS  PubMed  Google Scholar 

  46. D. Lebiedz, Entropy-related extremum principles for model reduction of dissipative dynamical systems. Entropy 12(4), 706 (2010)

    Article  CAS  Google Scholar 

  47. A. Ceccato, P. Nicolini, D. Frezzato, Attracting subspaces in a hyper-spherical representation of autonomous dynamical systems. J. Math. Phys. 58(9), 092701 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Frezzato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceccato, A., Nicolini, P. & Frezzato, D. Recasting the mass-action rate equations of open chemical reaction networks into a universal quadratic format. J Math Chem 57, 1001–1018 (2019). https://doi.org/10.1007/s10910-019-01005-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-019-01005-4

Keywords

Mathematics Subject Classification

Navigation