Skip to main content
Log in

Pfaffian polyominos on the Klein bottle

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

If a graph G is Pfaffian, then the number of perfect matchings of G can be computed in polynomial time. So it makes sense to test whether a graph is Pfaffian. Historically in organic chemistry and combinatorial mathematics, polyominos have attracted the most attention. In this paper, we characterize all Pfaffian polyominos on the Klein bottle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, vol. 184 (Springer, New York, 1998)

    Book  Google Scholar 

  2. E.J. Cockayne, Chessboard domination problems. Discrete Math. 86, 13–20 (1990)

    Article  Google Scholar 

  3. R. Diestel, Graph Theory, Graduate Texts in Mathematics, vol. 173 (Springer, Berlin, 2005)

    Google Scholar 

  4. P.A. Firby, C.F. Gardiner, Surface Topology, 2nd edn. (Ellis Horwood Ser Math Appl., New York, 1991)

    Google Scholar 

  5. I. Fischer, C.H.C. Little, A characterization of Pfaffian near bipartite graphs. J. Comb. Theory Ser.B 82, 175–222 (2001)

    Article  Google Scholar 

  6. M.E. Fisher, Statistical mecanics of dimers on a plane lattice. Phys. Rev. 124, 1664–1672 (1961)

    Article  Google Scholar 

  7. F. Harary, P.G. Mezey, The diet transform of lattice patterns, equivalence relations, and similarity measures. Mol. Eng. 6, 415–416 (1996)

    Article  CAS  Google Scholar 

  8. F. Harary, P.G. Mezey, Cell-shedding transformations, equivalence relations, and similarity measures for square-cell configurations. Int. J. Quantum Chem. 62, 353–361 (1997)

    Article  CAS  Google Scholar 

  9. P.W. Kasteleyn, The statistics of dimers on a lattice I: the number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)

    Article  Google Scholar 

  10. P.W. Kasteleyn, Graph Theory and crystal physics, in Graph Theory and Theoretical Physics, ed. by F. Harary (Academic Press, New York, 1967), pp. 43–110

    Google Scholar 

  11. C.H.C. Little, A characterization of convertible (0,1)-matrices. J. Comb. Theory 18, 187–208 (1975)

    Article  Google Scholar 

  12. L. Lovász, M. Plummer, Matching Theory. Annals of Discrete Mathematics, vol. 29 (North-Holland, New York, 1986)

    Google Scholar 

  13. F.L. Lu, L.Z. Zhang, F.G. Lin, Enumeration of perfect matchings of a type of quadratic lattice on the torus. Electron. J. Comb. 17, R36 (2010)

    Google Scholar 

  14. F.L. Lu, L.Z. Zhang, F.G. Lin, Dimer statistics on the Klein bottle. Physica A 390, 2315–2324 (2011)

    Article  CAS  Google Scholar 

  15. W.T. Lu, F.Y. Wu, Close-packed dimers on nonorientable surfaces. Phys. Lett. A 293, 235–246 (2002)

    Article  CAS  Google Scholar 

  16. W. McCuaig, Pólya’s permanent problem. Electron. J. Comb. 11, R79 (2004)

    Google Scholar 

  17. J.R. Munkres, Elements of Algebraic Topology (Addison-Wesley, Menlo Park, 1984)

    Google Scholar 

  18. S. Norine, Drawing Pfaffian graphs, graph drawing, in 12th International Symposium. vol. 3383 (LNCS, 2005), pp. 371–376

    Chapter  Google Scholar 

  19. N. Robertson, P.D. Seymour, R. Thomas, Permanent. Pfaffian orientations and even directed circuits. Math. Ann. 150, 929–975 (1999)

    Article  Google Scholar 

  20. G. Tesler, Matchings in graphs on non-orientable surfaces. J. Comb. Theory Ser. B 78, 198–231 (2000)

    Article  Google Scholar 

  21. R. Thomas, A survey of Pfaffian orientations of graphs, in International Congress of Mathematicians, vol. III, Eur. Math. Soc., Zurich (2006), pp. 963–984

  22. C. Thomassen, Tilings of the torus and the klein bottle and vertex-transitive graphs on a fixed surface. Trans. Am. Math. Soc 323, 605–635 (1991)

    Article  Google Scholar 

  23. L.G. Valiant, The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

    Article  Google Scholar 

  24. P.D. Walker, P.G. Mezey, Representation of square-cell configurations in the complex plane: tools for the characterization of molecular monolayers and cross sections of molecular surfaces. Int. J. Quantum Chem. 43(3), 375–392 (1992)

    Article  CAS  Google Scholar 

  25. D. West, Introduction to Graph Theory (Prentice-Hall, Upper Saddle River, 2001)

    Google Scholar 

  26. W.G. Yan, Y.N. Yeh, F.J. Zhang, Dimer problem on the cylinder and torus. Physica A 387, 6069–6078 (2008)

    Article  Google Scholar 

  27. L.Z. Zhang, Y. Wang, F.L. Lu, Pfaffian graphs embedding on the torus. Sci. China Math. 56, 1957–1964 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Institute of Meteorological Big Data-Digital Fujian and Fujian Key Laboratory of Data Science and Statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Additional information

Partially supported by NSF of China (No.11671186); NSF of Fujian Province (2017J01404); Science Foundation for the Education Department of Fujian Province (JZ160455)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y. Pfaffian polyominos on the Klein bottle. J Math Chem 56, 3147–3160 (2018). https://doi.org/10.1007/s10910-018-0938-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0938-x

Keywords

Mathematics Subject Classification

Navigation