Skip to main content
Log in

Solutions of the Klein–Gordon equation with the improved Tietz potential energy model

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We present the relativistic rotation–vibrational energy equation of a diatomic molecule which moves under the improved Tietz potential energy model in higher spatial dimensions. The nonrelativistic limits of the bound state solutions of the Klein–Gordon equation are the bound state solutions of the Schrödinger equation with the same potential energy function. Numerical analysis results show that there exists a critical point around which the solution behaviors bifurcate into two extreme cases. Below the critical point, the behavior of the relativistic vibrational energies for the ground electronic state of carbon monoxide in higher dimensions keeps similar to that of the three-dimensional system, while this symmetry phenomenon breaks and the Klein–Gordon equation has no stability solution upon the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. Saad, R.L. Hall, H. Ciftci, The Klein–Gordon equation with the Kratzer potential in d dimensions. Cent. Eur. J. Phys. 6, 717–729 (2008)

    Google Scholar 

  2. H. Hassanabadi, H. Rahimov, S. Zarrinkamar, Approximate solutions of Klein–Gordon equation with Kratzer potential. Adv. High Energy Phys. 2011, 458087 (2011)

    Article  Google Scholar 

  3. S.M. Ikhdair, R. Sever, Relativistic solution in D-dimensions to a spin-zero particle for equal scalar and vector ring-shaped Kratzer potential. Cent. Eur. J. Phys. 6, 141–152 (2008)

    CAS  Google Scholar 

  4. T.T. Ibrahim, K.J. Oyewumi, S.M. Wyngaardt, Analytical solution of N-dimensional Klein–Gordon and Dirac equations with Rosen–Morse potential. Eur. Phys. J. Plus 127, 100 (2012)

    Article  Google Scholar 

  5. H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, H. Rahimov, Approximate solutions of the Klein–Gordon equation for an Eckart and modified Hylleraas potential by SUSYQM. Eur. Phys. J. Plus 127, 143 (2012)

    Article  Google Scholar 

  6. X.Y. Chen, T. Chen, C.S. Jia, Solutions of the Klein–Gordon equation with the improved Manning–Rosen potential energy model in D dimensions. Eur. Phys. J. Plus 129, 75 (2014)

    Article  Google Scholar 

  7. M.S. Tan, S. He, C.S. Jia, Molecular spinless energies of the improved Rosen–Morse potential energy model in D dimensions. Eur. Phys. J. Plus 129, 264 (2014)

    Article  CAS  Google Scholar 

  8. X.J. Xie, C.S. Jia, Soloutions of the Klein–Gordon equation with the Morse potential energy model in higher spatial dimensions. Phys. Scr. 90, 035207 (2015)

    Article  CAS  Google Scholar 

  9. C.S. Jia, J.W. Dai, L.H. Zhang, J.Y. Liu, G.D. Zhang, Molecular spinless energies of the modified Rosen–Morse potential energy model in higher spatial dimensions. Chem. Phys. Lett. 619, 54–60 (2015)

    Article  CAS  Google Scholar 

  10. C.S. Jia, Y.F. Diao, X.J. Liu, P.Q. Wang, J.Y. Liu, G.D. Zhang, Equivalence of the Wei potential model and Tietz potential model for diatomic molecules. J. Chem. Phys. 137, 014101 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. T. Tietz, Potential-energy function for diatomic molecules. J. Chem. Phys. 38, 3036–3037 (1963)

    Article  Google Scholar 

  12. M.L. Strekalov, An accurate closed-form expression for the partition function of Morse oscillators. Chem. Phys. Lett. 439, 209–212 (2007)

    Article  CAS  Google Scholar 

  13. C.S. Jia, L.H. Zhang, C.W. Wang, Thermodynamic properties for the lithium dimer. Chem. Phys. Lett. 667, 211–215 (2017)

    Article  CAS  Google Scholar 

  14. X.Q. Song, C.W. Wang, C.S. Jia, Thermodynamic properties for the sodium dimer. Chem. Phys. Lett. 673, 50–55 (2017)

    Article  CAS  Google Scholar 

  15. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, R. Zeng, X.T. You, Partition function of improved Tietz oscillators. Chem. Phys. Lett. 676, 150–153 (2017)

    Article  CAS  Google Scholar 

  16. C.S. Jia, T. Chen, L.Z. Yi, S.R. Lin, Equivalence of the deformed Rosen–Morse potential energy model and Tietz potential energy model. J. Math. Chem. 51, 2165–2172 (2013)

    Article  CAS  Google Scholar 

  17. G.D. Zhang, W. Zhou, J.Y. Liu, L.H. Zhang, C.S. Jia, D-dimensional energies for sodium dimer. Chem. Phys. 439, 79–84 (2014)

    Article  CAS  Google Scholar 

  18. C.W. Li, J. Ciston, M.W. Kanan, Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. C.L. Pekeris, The rotation–vibration coupling in diatomic molecules. Phys. Rev. 45, 98–103 (1934)

    Article  CAS  Google Scholar 

  20. L.E. Gendenshtein, Derivation of exact spectra of the Schrödinger equation by means of supersymmetry. Sov. Phys. JETP Lett. 38, 356–359 (1983)

    Google Scholar 

  21. C.S. Jia, X.G. Wang, X.K. Yao, P.C. Chen, W. Xiao, A unified recurrence operator method for obtaining normalized explicit wavefunctions for shape-invariant potentials. J. Phys. A: Math. Gen. 31, 4763–4772 (1998)

    Article  Google Scholar 

  22. C. Berkdemir, A. Berkdemir, R. Sever, Shape-invariance approach and Hamiltonian hierarchy method on the Woods–Saxon potential for ℓ ≠ 0 states. J. Math. Chem. 43, 944–954 (2008)

    Article  CAS  Google Scholar 

  23. D. Mikulski, K. Eder, J. Konarski, The supersymmetric quantum mechanics theory and Darboux transformation for the Morse oscillator with an approximate rotational term. J. Math. Chem. 52, 1552–1562 (2014)

    Article  CAS  Google Scholar 

  24. D. Mikulski, J. Konarski, K. Eder, M. Molski, S. Kabaciński, Exact solution of the Schrödinger equation with a new expansion of anharmonic potential with the use of the supersymmetric quantum mechanics and factorization method. J. Math. Chem. 53, 2018–2027 (2015)

    Article  CAS  Google Scholar 

  25. M. Eshghi, H. Mehraban, M. Ghafoori, Non-relativistic Eigen spectra with q-deformed physical potentials by using the SUSY approach. Math. Methods Appl. Sci. 40, 1003–1018 (2016)

    Article  Google Scholar 

  26. J.F. Du, P. Guo, C.S. Jia, D-dimensional energies for scandium monoiodide. J. Math. Chem. 52, 2559–2569 (2014)

    Article  CAS  Google Scholar 

  27. F. Cooper, B. Freedman, Aspects of supersymmetric quantum mechanics. Ann. Phys. 146(2), 262–288 (1983)

    Article  CAS  Google Scholar 

  28. P.G. Hajigeorgiou, An extend Lennard–Jones potential energy function for diatomic molecules: application to ground electronic states. J. Mol. Spectrosc. 263, 101–110 (2010)

    Article  CAS  Google Scholar 

  29. G.F. Wei, S.H. Dong, Pseudospin symmetry for modified Rosen–Morse potential including a Pekeris-type approximation to the pseudo-centrifugal term. Eur. Phys. J. A 46, 207–212 (2010)

    Article  CAS  Google Scholar 

  30. I. Tobias, R.J. Fallon, J.T. Vanderslice, Potential energy curve for CO. J. Chem. Phys. 33, 1638–1640 (1960)

    Article  CAS  Google Scholar 

  31. J.F. Wang, X.L. Peng, L.H. Zhang, C.W. Wang, C.S. Jia, Entropy of gaseous boron monobromide. Chem. Phys. Lett. 686, 131–133 (2017)

    Article  CAS  Google Scholar 

  32. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, J.Y. Liu, Y. Xiong, R. Zeng, Predictions of entropy for diatomic molecules and gaseous substances. Chem. Phys. Lett. 692, 57–60 (2018)

    Article  CAS  Google Scholar 

  33. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, R. Zeng, Enthalpy of gaseous phosphorus dimer. Chem. Eng. Sci. 183, 26–29 (2018)

    Article  CAS  Google Scholar 

  34. A. Demirkaya, M. Stanislavova, Conditional stability theorem for the one dimensional Klein–Gordon equation. J. Math. Phys. 52, 112703 (2011)

    Article  Google Scholar 

  35. D. Chakraborty, J.H. Jung, Efficient determination of the critical parameters and the statistical quantities for Klein–Gordon and sine-Gordon equations with a singular potential using generalized polynomial chaos methods. J. Comput. Sci. 4, 46–61 (2013)

    Article  Google Scholar 

  36. P.G. Hajigeorgiou, The number of bound vibrational levels in a diatomic molecule. J. Mol. Spectrosc. 286–287, 1–4 (2013)

    Article  CAS  Google Scholar 

  37. P.G. Hajigeorgiou, The vibrational index at dissociation: an extended treatment. J. Mol. Spectrosc. 296, 17–23 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the kind referees for positive and invaluable suggestions which have greatly improved the manuscript. This work was supported by the Key Program of National Natural Science Foundation of China under Grant No. 51534006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Sheng Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HB., Yi, LZ. & Jia, CS. Solutions of the Klein–Gordon equation with the improved Tietz potential energy model. J Math Chem 56, 2982–2994 (2018). https://doi.org/10.1007/s10910-018-0927-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0927-0

Keywords

Navigation