Skip to main content
Log in

The structural modeling of EF-hand motifs in parvalbumin

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Parvalbumin (Parv) is a typical protein with EF-hand motifs that play an important role in many physiological processes. We present a novel free energy to model the skeletal C\(_\alpha \) chain of the protein from the basic principle of mathematics and physics. Starting from the crystal structure of Parv (PDB code 2PVB), we first analyze the profile of the C\(_\alpha \) bond and torsion angles over the segment that contains the secondary structures. Then the parameters in the energy function are evaluated for the helix ABCD fragment that contains two EF-hand domains in Parv. Meanwhile an eight-soliton configuration at the energy minimum is constructed to model the conformation of ABCD fragment. The deviation of the conformation constructed from the model away from the crystal structure is as small as 1.28 Å. The structural modeling stems from the physical energy, which is a benefit relative to the statistics-based or knowledge-based technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.H. Kretsinger, D.J. Nelson, Calcium in biological systems. Coord. Chem. Rev. 18, 29–124 (1976)

    Article  CAS  Google Scholar 

  2. R.H. Kretsinger, D. Moncrief, A. Persechini, The EF-hand family of calcium-modulated proteins. Trends Neurosci. 12, 462–467 (1989)

    Article  PubMed  Google Scholar 

  3. H. Kawasaki, R.H. Kretsinger, Calcium-binding proteins 1: EF-hands. Protein Profile 1, 343–517 (1994)

    CAS  PubMed  Google Scholar 

  4. B.W. Schafer, C.W. Heizmann, The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem. Sci. 21, 134–140 (1996)

    Article  CAS  PubMed  Google Scholar 

  5. A.S. Polans, D. Witkowska, T.L. Heley, D. Amundson, L. Baizer, G. Adamus, Recoverin, a photoreceptor-specific calcium-binding protein, is expressed by the tumor of a patient with cancer-associated retinopathy. Proc. Natl. Acad. Sci. U. S. A. 92, 9176–9180 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. P. Vito, E. Lacana, L.D. Adamio, Interfering with apoptosis: Ca\(^{2+}\)-binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science 271, 521–525 (1996)

    Article  CAS  PubMed  Google Scholar 

  7. R.H. Kretsinger, C.E. Nockolds, Carp muscle calcium-binding protein. J. Biol. Chem. 248, 3313–3326 (1973)

    CAS  PubMed  Google Scholar 

  8. S.J. Opella, D.J. Nelson, O. Jardetzky, Carbon magnetic resonance study of the conformational changes in carp muscle calcium binding parvalbumin. J. Am. Chem. Soc. 96, 7157–7159 (1974)

    Article  CAS  PubMed  Google Scholar 

  9. A. Cavé, C.M. Dobson, J. Parello, R.J.P. Williams, Conformation mobility within the structure of muscular parvalbumins. An NMR study of the aromatic resonances of phenylalanine residues. FEBS Lett. 65, 190–194 (1976)

    Article  PubMed  Google Scholar 

  10. J.P. Declecq, B. Tinant, J. Parello, X-ray structure of a new crystal form of pike 4.10 \(\beta \) parvalbumin. Acta Crystallogr. Sect. D 52, 165–169 (1996)

    Article  Google Scholar 

  11. J.P. Declercq, C. Evrard, V. Lamzin, J. Parello, Crystal structure of the EF-hand parvalbumin at atomic resolution (0.91 Å) and at low temperature (100 K). Evidence for conformational multistates within the hydrophobic core. Protein Sci. 8, 2194–2204 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. R.C. Richardson, N.M. King, D.J. Harrington, H. Sun, W.E. Royer, D.J. Nelson, X-ray crystal structure and molecular dynamics simulations of silver hake parvalbumin (isoform B). Protein Sci. 9, 73–82 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S.K. Drake, K.L. Lee, J.J. Falke, Tuning the equilibrium ion affinity and selectivity of the EF-hand calcium binding motif: substitutions at the gateway position. Biochemistry 35, 6697–6705 (1996)

    Article  CAS  PubMed  Google Scholar 

  14. K. Fahie, R. Pitts, K.M. Elkins, D.J. Nelson, Molecular dynamics study of Ca\(^{2+}\)-binding loop variants of silver hake parvalbumin with aspartic acid at the “Gateway” position. J. Biomol. Struct. Dyn. 19, 821–837 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. D. Baker, A. Sali, Protein structure prediction and structural genomics. Science 294, 93–96 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. K.A. Dill, S.B. Ozkan, M.S. shell, T.R. Weikl, The protein folding problem. Annu. Rev. Biophys. 37, 289–316 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. P. Ahlstöm, O. Teleman, B. Jönsson, Molecular dynamics simulation of interfacial water structure and dynamics in a parvalbumin solution. J. Am. Chem. Soc. 110, 4198–4203 (1988)

    Article  Google Scholar 

  18. D. Allouche, J. Parello, Y.H. Sanejouand, Ca\(^{2+}\)/Mg\(^{2+}\) exchange in parvalbumin and other EF-hand proteins. A theoretical study. J. Mol. Biol. 285, 857–873 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. M.S. Cates, M.L. Teodoro, G.N. Phillops Jr., Molecular mechanisms of calcium and magnesium binding to parvalbumin. Biophys. J. 82, 1133–1146 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A.N. Kucharski, C.E. Scott, J.P. Davis, P.M. Kekenes-Huskey, Understanding ion binding affinity and selectivity in \(\beta \)-parvalbumin unsing molecular dynamics and mean spherical approximation theory. J. Phys. Chem. B 120, 8617–8630 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. J.F. He, J. Dai, J. Li, X.B. Peng, A.J. Niemi, Aspects of structural landscape of human islet amyloid polypeptide. J. Chem. Phys. 142, 045102 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. J. Dai, A.J. Niemi, J.F. He, A. Sieradzan, N. Ilieva, Bloch spin waves and emergent structure in protein folding with HIV envelope glycoprotein as an example. Phys. Rev. E 93, 032409 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. J. Dai, A.J. Niemi, J.F. He, Conformational landscape of an amyloid intra-cellular domain and Landau–Ginzburg–Wilson paradigm in protein dynamics. J. Chem. Phys. 145, 045103 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. J.J. Liu, J. Dai, J.F. He, A.J. Niemi, N. Ilieva, Multistage modeling of protein dynamics with monomeric Myc oncoprotein as an example. Phys. Rev. E 95, 032406 (2017)

    Article  PubMed  Google Scholar 

  25. X. Peng, A. Chenani, S. Hu, Y. Zhou, A. Niemi, A three dimensional visualisation approach to protein heavy-atom structure reconstruction. BMC Struct. Biol. 14, 27 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  26. S.B. Anfinsen, Principles that govern the folding of protein chains. Science 181, 223–230 (1973)

    Article  CAS  PubMed  Google Scholar 

  27. I. Sillitoe, T.E. Lewis, A. Cuff, S. Das, P. Ashford, N.L. Dawson, N. Furnham, R.A. Laskowski, D. Lee, J.G. Lees, S. Lehtinen, R.A. Studer, J. Thornton, C.A. Orengo, CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res. 43(D1), D376–D381 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. A.G. Murzin, S.E. Brenner, T. Hubbard, C. Chothia, SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Antti J. Niemi of Uppsala University, our cooperator in biophysics, for continued discussions on the theory and method. We also thanks the support of the international cooperation project of Beijing Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., He, J. & Li, J. The structural modeling of EF-hand motifs in parvalbumin. J Math Chem 56, 2525–2536 (2018). https://doi.org/10.1007/s10910-018-0904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0904-7

Keywords

Navigation