Advertisement

Journal of Mathematical Chemistry

, Volume 56, Issue 8, pp 2392–2417 | Cite as

Mathematical modeling of the effects of attenuation and system electronic coupling on the determination of speed of sound in ultrasonic interferometry

  • Ching Koon Yau
  • Christopher G. Jesudason
Original Paper
  • 46 Downloads

Abstract

Ultrasonic interferometry is an indispensable tool in molecular chemistry and imaging, inclusive of liquid state studies where the standard theory is used to determine many physico-chemical parameters, such as the isentropic compressibility and adiabatic bulk modulus. The first principle analysis conducted here augments the standard model with potentially significant consequences in the interpretation of these parameters and the output spectrum. The effect of attenuation of a wave on the observed separation between peaks in acoustic interferometry is a focus of the investigation. Important aspects of the theory of Hubbard and others were collated to derive two mathematical models that were used to fit experimental spectra. The first model does not assume fictitious quantities found in Hubbard’s theory and fits the experimental data well. The second model includes the effects of the electronics of the measuring system and is in excellent agreement with the experimental data. Theoretical and numerical analyses were performed to validate the two models. Numerically, the attenuation of a wave is shown to cause the peaks to deviate either positively or negatively from the otherwise ideal half-wavelength of \(\lambda /2\) and exact equations governing such deviations are derived that could have significant implications in theory and applications.

Keywords

Wave motion analysis Ultrasonic speed Ultrasonic interferometry Attenuation of sound 

Mathematics Subject Classification

76D33 

Notes

Acknowledgements

We are grateful to our colleague, Dr. Thorsten Heidelberg for his expertise in German language and also for the following Grants that have funded our research: UMRG RG293-14AFR and PPP PV006/2012A.

Supplementary material

References

  1. 1.
    B.S. Finn, ISIS 55(179), 7 (1964)CrossRefGoogle Scholar
  2. 2.
    T.M. Aminabhavi, B. Gopalakrishna, J. Chem. Eng. Data 40, 856 (1995)CrossRefGoogle Scholar
  3. 3.
    J.C.R. Reis, I.M.S. Lampreia, J. Mol. Liq. 179, 130 (2013)CrossRefGoogle Scholar
  4. 4.
    C.K. Yau, F. Nabi, C.G. Jesudason, J. Mol. Liq. 212, 79 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Nabi, C.K. Yau, C.G. Jesudason, J. Mol. Liq. 224, 551 (2016)CrossRefGoogle Scholar
  6. 6.
    K.H.A.E. Alkhaldi, A.S. Al-Jimaz, M.S. AlTuwaim, J. Chem. Thermodyn. 103, 249 (2016)CrossRefGoogle Scholar
  7. 7.
    H.S. Ju, E.J. Gottlieb, D.R. Augenstein, G.J. Brown, B.R. Tittmann, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(7), 1612 (2010)CrossRefPubMedGoogle Scholar
  8. 8.
    K.A. Wear, I.E.E.E. Trans, Ultrason. Ferroelectr. Freq. Control 47(1), 265 (2000)CrossRefGoogle Scholar
  9. 9.
    T. Motegi, K. Mizutani, N. Wakatsuki, Jpn. J. Appl. Phys. 52, 07HC05 (2013)CrossRefGoogle Scholar
  10. 10.
    C.M. Sehgal, Ultrasonics 33(2), 155 (1995)CrossRefGoogle Scholar
  11. 11.
    E.P. Papadakis, in: Physical Acoustics: Principles and Methods, vol 12, ed. by W.P. Mason, R.N. Thurston (Academic Press, New York, NY, USA, 1976), chap. 5, pp. 277–374Google Scholar
  12. 12.
    E.P. Papadakis, in: Physical Acoustics: Ultrasonic Measurement Methods, vol. 19, ed. by R.N. Thurston, A.D. Pierce (Academic Press, San Diego, CA, USA, 1990), chap. 2, pp. 81–106Google Scholar
  13. 13.
    G.W. Pierce, Proc. Am. Acad. Arts Sci. 60(5), 271 (1925)CrossRefGoogle Scholar
  14. 14.
    J.C. Hubbard, Phys. Rev. 38, 1011 (1931)CrossRefGoogle Scholar
  15. 15.
    F.E. Fox, Phys. Rev. 52, 973 (1937)CrossRefGoogle Scholar
  16. 16.
    T. Kishimoto, O. Nomoto, J. Phys. Soc. Jpn. 9(4), 620 (1954)CrossRefGoogle Scholar
  17. 17.
    K.F. Herzfeld, T.A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic Press, New York, NY, 1959)Google Scholar
  18. 18.
    J.J. Markham, R.T. Beyer, R.B. Lindsay, Rev. Modern Phys. 23(4), 353 (1951)CrossRefGoogle Scholar
  19. 19.
    W. Han, D.N. Sinha, K.N. Springer, D.C. Lizon, in Nondestructive Characterization of Materials VIII, ed. by R.E. Green Jr. (Plenum Press, New York, NY, USA, 1998), pp. 393–399CrossRefGoogle Scholar
  20. 20.
    F. Eggers, U. Kaatze, Meas. Sci. Technol. 7, 1 (1996)CrossRefGoogle Scholar
  21. 21.
    K.W. Katahara, C.S. Rai, M.H. Manghnani, J. Balogh, J. Geophys. Res. 86(B12), 779 (1981)CrossRefGoogle Scholar
  22. 22.
    J.C.R. Reis, Â.F.S. Santos, I.M.S. Lampreia, ChemPhysChem 11, 508 (2010)CrossRefPubMedGoogle Scholar
  23. 23.
    M.R. Moldover, R.M. Gavioso, J.B. Mehl, L. Pitre, M. de Podesta, J.T. Zhang, Metrologia 51, R1 (2014)CrossRefGoogle Scholar
  24. 24.
    R.M. Gavioso, D.M. Ripa, P.P.M. Steur, C. Gaiser, T. Zandt, B. Fellmuth, M. de Podesta, R. Underwood, G. Sutton, L. Pitre, F. Sparasci, L. Risegari, L. Gianfrani, A. Castrillo, G. Machin, Phil. Trans. R. Soc. A 374(2064), 20150046 (2016)CrossRefPubMedGoogle Scholar
  25. 25.
    F. Simonetti, P. Cawley, J. Acoust. Soc. Am. 115(1), 157 (2004)CrossRefPubMedGoogle Scholar
  26. 26.
    J.C. Hubbard, Phys. Rev. 46, 525 (1934)CrossRefGoogle Scholar
  27. 27.
    W.G. Cady, Proc. I. R. E. 10, 83 (1922)CrossRefGoogle Scholar
  28. 28.
    K.S.V. Dyke, Proc. I. R. E. 16, 724 (1928)Google Scholar
  29. 29.
    J.C. Hubbard, Phys. Rev. 41, 523 (1932)CrossRefGoogle Scholar
  30. 30.
    H.J. Pain, The Physics of Vibrations and Waves, 5th edn. (John Wiley & Sons, Singapore, 2003)Google Scholar
  31. 31.
    L.E. Kinsler, A.R. Frey, Fundamentals of Acoustics (John Wiley & Sons, New York, NY, USA, 1959)Google Scholar
  32. 32.
    H. Lamb, The Dynamical Theory of Sound (Dover Publications, New York, NY, 1960)Google Scholar
  33. 33.
    V.A.D. Grosso, C.W. Mader, J. Acoust. Soc. Am. 52(5), 1442 (1972)CrossRefGoogle Scholar
  34. 34.
    T. Takagi, H. Teranishi, J. Chem. Thermodyn. 19, 1299 (1987)CrossRefGoogle Scholar
  35. 35.
    G. Tardajos, M.D. Peña, E. Aicart, J. Chem. Thermodyn. 18, 683 (1986)CrossRefGoogle Scholar
  36. 36.
    K.C. Karla, K.C. Singh, D.C. Spah, J. Chem. Thermodyn. 21, 1243 (1989)CrossRefGoogle Scholar
  37. 37.
    C.E. Teeter Jr., J. Acoust. Soc. Am. 18(2), 488 (1946)CrossRefGoogle Scholar
  38. 38.
    C. Sörensen, Ann. der Physik 418(2), 121 (1936)CrossRefGoogle Scholar
  39. 39.
    J. Claeys, J. Errera, H. Sack, C.R. Acad, C. R. Acad. Sci. 202, 1493 (1936)Google Scholar
  40. 40.
    W. Buß, Ann. der Physik 33, 143 (1938)CrossRefGoogle Scholar
  41. 41.
    G.K. Hartmann, A.B. Focke, Phys. Rev. 57, 221 (1940)CrossRefGoogle Scholar
  42. 42.
    L.N. Liebermann, J. Acoust. Soc. Am. 20(6), 868 (1948)CrossRefGoogle Scholar
  43. 43.
    G.S. Verma, J. Chem. Phys. 18(10), 1352 (1950)CrossRefGoogle Scholar
  44. 44.
    C.J. Moen, J. Acoust. Soc. Am. 23(1), 62 (1951)CrossRefGoogle Scholar
  45. 45.
    M.C. Smith, R.E. Barrett, R.T. Beyer, J. Acoust. Soc. Am. 23(1), 71 (1951)CrossRefGoogle Scholar
  46. 46.
    R. Martinez, L. Leija, A. Vera, in Health Care Exchange (PAHCE), 2010 Pan America (2010), pp. 81–84Google Scholar
  47. 47.
    M.J. Holmes, N.G. Parker, M.J.W. Povey, J. Phys.: Conf. Ser. 269, 012011 (2011)Google Scholar
  48. 48.
    M.E. Baumgardt, C. R. Acad. Sci. 204, 416 (1937)Google Scholar
  49. 49.
    E.C. Gregg Jr., Rev. Sci. Inst. 12, 149 (1941)CrossRefGoogle Scholar
  50. 50.
    J.R. Pellam, J.K. Galt, J. Chem. Phys. 14(10), 608 (1946)CrossRefGoogle Scholar
  51. 51.
    Y. Wada, S. Shimbo, J. Acoust. Soc. Am. 24(2), 199 (1952)CrossRefGoogle Scholar
  52. 52.
    J.L. Hunter, W.H. Nichols, J. Haus, Phys. Lett. 37A(2), 127 (1971)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MalayaKuala LumpurMalaysia
  2. 2.Center for Theoretical Physics and Department of ChemistryUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations