Skip to main content
Log in

New hybrid two-step method with optimized phase and stability characteristics

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper and for the first time in the literature, we develop a new Runge–Kutta type symmetric two-step finite difference pair with the following characteristics:

  • the new algorithm is of symmetric type,

  • the new algorithm is of two-step,

  • the new algorithm is of five-stages,

  • the new algorithm is of twelfth-algebraic order,

  • the new algorithm is based on the following approximations:

    1. 1.

      the first layer on the point \(x_{n-1}\),

    2. 2.

      the second layer on the point \(x_{n-1}\),

    3. 3.

      the third layer on the point \(x_{n-1}\),

    4. 4.

      the fourth layer on the point \(x_{n}\) and finally,

    5. 5.

      the fifth (final) layer on the point \(x_{n+1}\),

  • the new algorithm has vanished the phase-lag and its first, second, third and fourth derivatives,

  • the new algorithm has improved stability characteristics for the general problems,

  • the new algorithm is of P-stable type since it has an interval of periodicity equal to \(\left( 0, \infty \right) \).

For the new developed algorithm we present a detailed numerical analysis (local truncation error and stability analysis). The effectiveness of the new developed algorithm is evaluated with the approximate solution of coupled differential equations arising from the Schrödinger type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)

    Article  Google Scholar 

  2. A.D. Raptis, T.E. Simos, A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)

    Article  Google Scholar 

  3. J.M. Franco, M. Palacios, J. Comput. Appl. Math. 30, 1 (1990)

    Article  Google Scholar 

  4. J.D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem (Wiley, New York, 1991), pp. 104–107

    Google Scholar 

  5. E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)

    Article  Google Scholar 

  6. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60(3), 773–785 (2008)

    CAS  Google Scholar 

  7. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

    Article  CAS  Google Scholar 

  8. http://www.burtleburtle.net/bob/math/multistep.html

  9. T.E. Simos, P.S. Williams, Bessel and Neumann fitted methods for the numerical solution of the radial Schrödinger equation. Comput. Chem. 21, 175–179 (1977)

    Article  Google Scholar 

  10. T.E. Simos, J. Vigo-Aguiar, A dissipative exponentially-fitted method for the numerical solution of the Schrödinger equation and related problems. Comput. Phys. Commun. 152, 274–294 (2003)

    Article  CAS  Google Scholar 

  11. T.E. Simos, G. Psihoyios, J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  12. T. Lyche, Chebyshevian multistep methods for ordinary differential eqations. Numer. Math. 19, 65–75 (1972)

    Article  Google Scholar 

  13. T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

    Article  Google Scholar 

  14. R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)

    Article  Google Scholar 

  15. J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  16. A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Article  Google Scholar 

  17. Z. Kalogiratou, T. Monovasilis, T.E. Simos, Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  18. Z. Kalogiratou, T.E. Simos, Newton–Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  19. G. Psihoyios, T.E. Simos, Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Article  Google Scholar 

  20. T.E. Simos, I.T. Famelis, C. Tsitouras, Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)

    Article  Google Scholar 

  21. T.E. Simos, Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  22. K. Tselios, T.E. Simos, Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Article  Google Scholar 

  23. D.P. Sakas, T.E. Simos, Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Article  Google Scholar 

  24. G. Psihoyios, T.E. Simos, A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Article  Google Scholar 

  25. Z.A. Anastassi, T.E. Simos, An optimized Runge–Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  26. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  27. S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  28. T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2010)

    Article  Google Scholar 

  29. T. E. Simos, New stable closed Newton–Cotes trigonometrically fitted formulae for long-time integration. Abstract Appl. Anal. 2012, Article ID 182536 (2012). https://doi.org/10.1155/2012/182536

  30. T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. 2012, Article ID 420387. https://doi.org/10.1155/2012/420387, (2012)

  31. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)

    Article  Google Scholar 

  32. I. Alolyan, T.E. Simos, A high algebraic order multistage explicit four-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 53(8), 1915–1942 (2015)

    Article  CAS  Google Scholar 

  33. I. Alolyan, T.E. Simos, Efficient low computational cost hybrid explicit four-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(8), 1808–1834 (2015)

    Article  CAS  Google Scholar 

  34. I. Alolyan, T.E. Simos, A high algebraic order predictor-corrector explicit method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 53(7), 1495–1522 (2015)

    Article  CAS  Google Scholar 

  35. I. Alolyan, T.E. Simos, A family of explicit linear six-step methods with vanished phase-lag and its first derivative. J. Math. Chem. 52(8), 2087–2118 (2014)

    Article  CAS  Google Scholar 

  36. T.E. Simos, An explicit four-step method with vanished phase-lag and its first and second derivatives. J. Math. Chem. 52(3), 833–855 (2014)

    Article  CAS  Google Scholar 

  37. I. Alolyan, T.E. Simos, A Runge-Kutta type four-step method with vanished phase-lag and its first and second derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(3), 917–947 (2014)

    Article  CAS  Google Scholar 

  38. I. Alolyan, T.E. Simos, A predictor-corrector explicit four-step method with vanished phase-lag and its first, second and third derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(2), 685–717 (2015)

    Article  CAS  Google Scholar 

  39. I. Alolyan, T.E. Simos, A hybrid type four-step method with vanished phase-lag and its first, second and third derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(9), 2334–2379 (2014)

    Article  CAS  Google Scholar 

  40. G.A. Panopoulos, T.E. Simos, A new optimized symmetric 8-step semi-embedded predictor-corrector method for the numerical solution of the radial Schrödinger equation and related orbital problems. J. Math. Chem. 51(7), 1914–1937 (2013)

    Article  CAS  Google Scholar 

  41. T.E. Simos, New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Part I: Construction and theoretical analysis. J. Math. Chem. 51(1), 194–226 (2013)

    Article  CAS  Google Scholar 

  42. T.E. Simos, High order closed Newton–Cotes exponentially and trigonometrically fitted formulae as multilayer symplectic integrators and their application to the radial Schrödinger equation. J. Math. Chem. 50(5), 1224–1261 (2012)

    Article  CAS  Google Scholar 

  43. D.F. Papadopoulos, T.E. Simos, A modified Runge–Kutta–Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433–437 (2013)

    Article  Google Scholar 

  44. Th Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic Runge–Kutta–Nyström methods. Appl. Math. Inf. Sci. 7(1), 81–85 (2013)

    Article  Google Scholar 

  45. G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor-corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73–80 (2013)

    Article  Google Scholar 

  46. D.F. Papadopoulos, T.E. Simos, The use of phase lag and amplification error derivatives for the construction of a modified Runge–Kutta–Nyström method. Abstract Appl. Anal. Article Number: 910624 Published (2013)

  47. I. Alolyan, Z.A. Anastassi, T.E. Simos, A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)

    Google Scholar 

  48. I. Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)

    Article  Google Scholar 

  49. Ch. Tsitouras, ITh Famelis, T.E. Simos, On modified Runge–Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)

    Article  Google Scholar 

  50. Ch. Tsitouras, ITh Famelis, T.E. Simos, Phase-fitted Runge–Kutta pairs of orders 8(7). J. Comput. Appl. Math. 321, 226–231 (2017)

    Article  Google Scholar 

  51. T.E. Simos, C. Tsitouras, Evolutionary generation of high order, explicit two step methods for second order linear IVPs. Math. Methods Appl. Sci. 40, 6276–6284 (2017)

    Article  Google Scholar 

  52. T.E. Simos, C. Tsitouras, A new family of 7 stages, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 40, 7867–7878 (2017)

    Article  Google Scholar 

  53. D.B. Berg, T.E. Simos, C. Tsitouras, Trigonometric fitted, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 41, 1845–1854 (2018)

    Article  Google Scholar 

  54. T.E. Simos, C. Tsitouras, I.T. Famelis, Explicit numerov type methods with constant coefficients: a review. Appl. Comput. Math. 16(2), 89–113 (2017)

    Google Scholar 

  55. A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge–Kutta–Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)

    Article  Google Scholar 

  56. Z. Kalogiratou, T. Monovasilis, T.E. Simos, New modified Runge–Kutta–Nystrom methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)

    Article  Google Scholar 

  57. T. Monovasilis, Z. Kalogiratou, T.E. Simos, A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)

    Google Scholar 

  58. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Construction of exponentially fitted symplectic Runge–Kutta–Nyström methods from partitioned Runge-Kutta methods. Mediterr. J. Math. 13(4), 2271–2285 (2016)

    Article  Google Scholar 

  59. T. Monovasilis, Z. Kalogiratou, H. Ramos, T.E. Simos, Modified two-step hybrid methods for the numerical integration of oscillatory problems. Math. Methods Appl. Sci. 40(4), 5286–5294 (2017)

    Article  Google Scholar 

  60. T. Simos, Multistage symmetric two-step p-stable method with vanished phase-lag and its first, second and third derivatives. Appl. Comput. Math 14(3), 296–315 (2015)

    Google Scholar 

  61. Z. Kalogiratou, T. Monovasilis, H. Ramos, T.E. Simos, A new approach on the construction of trigonometrically fitted two step hybrid methods. J. Comput. Appl. Math. 303, 146–155 (2016)

    Article  Google Scholar 

  62. H. Ramos, Z. Kalogiratou, T. Monovasilis, T.E. Simos, An optimized two-step hybrid block method for solving general second order initial-value problems. Numer. Algorithms 72, 1089–1102 (2016)

    Article  Google Scholar 

  63. T. Monovasilis, Z. Kalogiratou , T.E. Simos, Trigonometrical fitting conditions for two derivative Runge–Kutta methods. Numer. Algorithms (in press - online first)

  64. T.E. Simos, High order closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

    Google Scholar 

  65. A. Konguetsof, T.E. Simos, An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Comput. Math. Appl. 45(1–3), 547–554 Article Number: PII S0898–1221(02)00354–1 (2003)

  66. T.E. Simos, A new explicit hybrid four-step method with vanished phase-lag and its derivatives. J. Math. Chem. 52(7), 1690–1716 (2014)

    Article  CAS  Google Scholar 

  67. T.E. Simos, On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8(2), 447–458 (2014)

    Article  Google Scholar 

  68. G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor-corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703–713 (2014)

    Article  Google Scholar 

  69. G.A. Panopoulos, T.E. Simos, An eight-step semi-embedded predictor-corrector method for orbital problems and related IVPs with oscillatory solutions for which the frequency is unknown. J. Comput. Appl. Math. 290, 1–15 (2015)

    Article  Google Scholar 

  70. F. Hui, T.E. Simos, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(10), 2191–2213 (2015)

    Article  CAS  Google Scholar 

  71. L.G. Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  CAS  Google Scholar 

  72. L.G. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)

    Google Scholar 

  73. L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  74. J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge–Kutta–Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

    Article  Google Scholar 

  75. J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

  76. G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)

    Article  Google Scholar 

  77. A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  78. M.M. Chawla, P.S. Rao, An Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. II: explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)

    Article  Google Scholar 

  79. M.M. Chawla, P.S. Rao, An explicit sixth-order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)

    Google Scholar 

  80. T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46, 981–1007 (2009)

    Article  CAS  Google Scholar 

  81. A. Konguetsof, Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)

    Article  CAS  Google Scholar 

  82. A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)

    Article  CAS  Google Scholar 

  83. A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)

    Article  Google Scholar 

  84. R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427–442 (1963)

    Article  CAS  Google Scholar 

  85. R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)

    Article  CAS  Google Scholar 

  86. T.E. Simos, Exponentially fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)

    Article  Google Scholar 

  87. J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formula. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

  88. Mu Kenan, T.E. Simos, A Runge–Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53, 1239–1256 (2015)

    Article  CAS  Google Scholar 

  89. M. Liang, T.E. Simos, A new four stages symmetric two-step method with vanished phase-lag and its first derivative for the numerical integration of the Schrödinger equation. J. Math. Chem. 54(5), 1187–1211 (2016)

    Article  CAS  Google Scholar 

  90. X. Xi, T.E. Simos, A new high algebraic order four stages symmetric two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 54(7), 1417–1439 (2016)

    Article  CAS  Google Scholar 

  91. F. Hui, T.E. Simos, Hybrid high algebraic order two-step method with vanished phase-lag and its first and second derivatives. MATCH Commun. Math. Comput. Chem. 73, 619–648 (2015)

    Google Scholar 

  92. Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54, 442–465 (2016)

    Article  CAS  Google Scholar 

  93. F. Hui, T.E. Simos, Four stages symmetric two-step p-stable method with vanished phase-lag and its first, second, third and fourth derivatives. Appl. Comput. Math. 15(2), 220–238 (2016)

    Google Scholar 

  94. W. Zhang, T.E. Simos, A high-order two-step phase-fitted method for the numerical solution of the Schrödinger equation. Mediterr. J. Math. 13(6), 5177–5194 (2016)

    Article  Google Scholar 

  95. L. Zhang, T.E. Simos, An efficient numerical method for the solution of the Schrödinger equation. Adv. Math. Phys. 8181927, 20 (2016). https://doi.org/10.1155/2016/8181927

    Article  Google Scholar 

  96. D. Ming, T.E. Simos, A new high algebraic order efficient finite difference method for the solution of the Schrödinger equation. Filomat 31(15), 4999–5012 (2017)

    Article  Google Scholar 

  97. R. Lin, T.E. Simos, A two-step method with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Open Phys. 14, 628–642 (2016)

    Article  Google Scholar 

  98. H. Ning, T.E. Simos, A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation. J. Math. Chem. 53, 1295–1312 (2015)

    Article  CAS  Google Scholar 

  99. Z. Wang, T.E. Simos, An economical eighth-order method for the approximation of the solution of the Schrödinger equation. J. Math. Chem. 55, 717–733 (2017)

    Article  CAS  Google Scholar 

  100. J. Ma, T.E. Simos, An efficient and computational effective method for second order problems. J. Math. Chem. 55, 1649–1668 (2017)

    Article  CAS  Google Scholar 

  101. V.N. Kovalnogov, R.V. Fedorov, V.M. Golovanov, B.M. Kostishko, T.E. Simos, A four stages numerical pair with optimal phase and stability properties. J. Math. Chem. 56(1), 81–102 (2018)

    Article  CAS  Google Scholar 

  102. K. Yan, T.E. Simos, A finite difference pair with improved phase and stability properties. J. Math. Chem. 56(1), 170–192 (2018)

    Article  CAS  Google Scholar 

  103. F. Jie, C. Liu, T.E. Simos, A hybric finite difference pair with maximum phase and stability properties. J. Math. Chem. 56(2), 423–448 (2018)

    Article  CAS  Google Scholar 

  104. J. Yao, T.E. Simos, New finite difference pair with optimized phase and stability properties. J. Math. Chem. 56(2), 449–476 (2018)

    Article  CAS  Google Scholar 

  105. X. Shi, T.E. Simos, New five-stages finite difference pair with optimized phase properties. J. Math. Chem. 56(4), 982–1010 (2018)

    Article  CAS  Google Scholar 

  106. C. Liu, T.E. Simos, A five-stages symmetric method with improved phase properties. J. Math. Chem. 56(4), 1313–1338 (2018)

    Article  CAS  Google Scholar 

  107. J. Yao, T.E. Simos, New five-stages two-step method with improved characteristics. J. Math. Chem. (2018). https://doi.org/10.1007/s10910-018-0874-9

  108. C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004)

    Google Scholar 

  109. F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)

    Google Scholar 

  110. A.R. Leach, Molecular Modelling—Principles and Applications (Pearson, Essex, 2001)

    Google Scholar 

  111. P. Atkins, R. Friedman, Molecular Quantum Mechanics (Oxford University Press, Oxford, 2011)

    Google Scholar 

  112. T.E. Simos, V.N. Kovalnogov, I.V. Shevchuk, Perspective of mathematical modeling and research of targeted formation of disperse phase clusters in working media for the next-generation power engineering technologies. AIP Conf. Proc. 1863, 560099 (2017)

    Article  CAS  Google Scholar 

  113. V.N. Kovalnogov, R.V. Fedorov, M.S. Boyarkin, Method of calculation of a thermolysis and friction of a turbulent disperse flow in nozzles. AIP Conf. Proc. 1863, 560015 (2017)

    Article  CAS  Google Scholar 

  114. V.N. Kovalnogov, R.V. Fedorov, L.V. Khakhaleva, A.V. Chukalin, A.A. Bondarenko, E.N. Kovrizhnykh, The mechanism and theoretical basis of the management of intensity of the heat transfer control through periodic influences on the turbulent boundary layer. AIP Conf. Proc. 1863, 560016 (2017)

    Article  Google Scholar 

  115. V.N. Kovalnogov, R.V. Fedorov, L.V. Khakhaleva, A.N. Zolotov, The modeling of influence of the external turbulence over the heat transfer towards the surface of turbomachinery blades. AIP Conf. Proc. 1863, 560017 (2017)

    Article  Google Scholar 

  116. V.N. Kovalnogov, R.V. Fedorov, Y.A. Khakhalev, L.V. Khakhaleva, A.V. Chukalin, Application of the results of experimental and numerical turbulent flow researches based on pressure pulsations analysis. AIP Conf. Proc. 1863, 560018 (2017)

    Article  Google Scholar 

  117. V.N. Kovalnogov, R.V. Fedorov, L.V. Khakhaleva, D.A. Generalov, A.V. Chukalin, Development and investigation of the technologies involving thermal protection of surfaces immersed in disperse working medium flow. Int. J. Energy Clean Environ. 17(2–4), 223–239 (2016)

    Article  Google Scholar 

  118. V.N. Kovalnogov, R.V. Fedorov, Numerical analysis of the efficiency of film cooling of surface streamlined by supersonic disperse flow. AIP Conf. Proc. 1648, 850031 (2015)

    Article  Google Scholar 

  119. V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, E.V. Tsvetova, Numerical analysis of the temperature stratification of the disperse flow. AIP Conf. Proc. 1648, 850033 (2015)

    Article  Google Scholar 

  120. N. Kovalnogov, E. Nadyseva, O. Shakhov, V. Kovalnogov, Control of turbulent transfer in the boundary layer through applied periodic effects. Izvest. Vysshikh Uchebnykh Zaved. Aviat. Tekh. (1), 49–53 (1998)

    Google Scholar 

  121. N. Kovalnogov, V. Kovalnogov, Characteristics of numerical integration and conditions of solution stability in the system of differential equations of boundary layer, subjected to the intense influence. Izvest. Vysshikh Uchebnykh Zaved. Aviat. Tekh. (1), 58–61 (1996)

    Google Scholar 

  122. M.S. Boyarkin, V.N. Kovalnogov, T.V. Karpukhina, R.V. Fedorov, Development and research of the technology of enriching low-grade solid fuels with recirculating flue gases for boiler plants. Int. J. Energy Clean Environ. 17(2–4), 145–163 (2016)

    Article  Google Scholar 

  123. V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Y.A. Khakhalev, A.N. Zolotov, Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations. AIP Conf. Proc. 1738, 480004 (2016)

    Article  Google Scholar 

  124. S. Kottwitz, LaTeX Cookbook (Packt Publishing Ltd., Birmingham, 2015), pp. 231–236

    Google Scholar 

Download references

Acknowledgements

The research was funded by a Grant of the Russian Foundation for Basic Research (RFBR) for the Project No. 16-38-60114

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highly Cited Researcher (http://isihighlycited.com/), Active Member of the European Academy of Sciences and Arts. Active Member of the European Academy of Sciences. Corresponding Member of European Academy of Arts, Sciences and Humanities.

Appendices

Appendix A

$$\begin{aligned} T_{0} \left( v \right)= & {} 5\, \left( \cos \left( v \right) \right) ^{2}{v}^{6}+30\,\cos \left( v \right) \sin \left( v \right) {v}^{5}\\&+ 65\,\cos \left( v \right) {v}^{6}-123\, \left( \cos \left( v \right) \right) ^{2}{v}^{4}\\&+ 150\,{v}^{5}\sin \left( v \right) +80\,{v}^{6}-267\,\cos \left( v \right) {v}^{3}\sin \left( v \right) \\&+699\,\cos \left( v \right) {v}^{4}-144\, \left( \cos \left( v \right) \right) ^{2}{v}^{2}-885\,{v}^{3}\sin \left( v \right) \\&- 618\,{v}^{4}+4608\, \left( \cos \left( v \right) \right) ^{3}-2448\,\cos \left( v \right) v\sin \left( v \right) \\&- 144\,{v}^{2}\cos \left( v \right) -9216\, \left( \cos \left( v \right) \right) ^{2}+2448\,v\sin \left( v \right) \\&+ 288\,{v}^{2}+4608\,\cos \left( v \right) \\ T_{1} \left( v \right)= & {} \left( \cos \left( v \right) \right) ^{2}{v}^{6}+8\,\cos \left( v \right) \sin \left( v \right) {v}^{5}\\&+ 13\,\cos \left( v \right) {v}^{6}-30\, \left( \cos \left( v \right) \right) ^{2}{v}^{4}\\&+ 40\,{v}^{5}\sin \left( v \right) +16\,{v}^{6}-75\,\cos \left( v \right) {v}^{3}\sin \left( v \right) \\&- 138\,\cos \left( v \right) {v}^{4}-9\, \left( \cos \left( v \right) \right) ^{2}{v}^{2}-249\,{v}^{3}\sin \left( v \right) \\&- 102\,{v}^{4}+1152\, \left( \cos \left( v \right) \right) ^{3}-585\,\cos \left( v \right) v\sin \left( v \right) -9\,{v}^{2}\cos \left( v \right) \\&- 2304\, \left( \cos \left( v \right) \right) ^{2}+585\,v\sin \left( v \right) \\&+ 18\,{v}^{2} + 1152\,\cos \left( v \right) \\ T_{2} \left( v \right)= & {} \left( \cos \left( v \right) \right) ^{2}{v}^{6}+10\,\cos \left( v \right) \sin \left( v \right) {v}^{5}\\ \end{aligned}$$
$$\begin{aligned}&+ 13\,\cos \left( v \right) {v}^{6}-43\, \left( \cos \left( v \right) \right) ^{2}{v}^{4}\\&+ 50\,{v}^{5}\sin \left( v \right) +16\,{v}^{6}-99\,\cos \left( v \right) {v}^{3}\sin \left( v \right) \\&- 139\,\cos \left( v \right) {v}^{4}+72\, \left( \cos \left( v \right) \right) ^{2}{v}^{2}-285\,{v}^{3}\sin \left( v \right) \\&- 58\,{v}^{4}+1536\, \left( \cos \left( v \right) \right) ^{3}-696\,\cos \left( v \right) v\sin \left( v \right) +72\,{v}^{2}\cos \left( v \right) \\&- 3072\, \left( \cos \left( v \right) \right) ^{2}+696\,v\sin \left( v \right) \\&- 144\,{v}^{2} + 1536\,\cos \left( v \right) \\ T_{3} \left( v \right)= & {} \left( \cos \left( v \right) \right) ^{2}{v}^{6}+12\,\cos \left( v \right) \sin \left( v \right) {v}^{5}\\&+ 13\,\cos \left( v \right) {v}^{6}-63\, \left( \cos \left( v \right) \right) ^{2}{v}^{4}\\&+ 60\,{v}^{5}\sin \left( v \right) +16\,{v}^{6}-165\,\cos \left( v \right) {v}^{3}\sin \left( v \right) \\&- 135\,\cos \left( v \right) {v}^{4}+162\, \left( \cos \left( v \right) \right) ^{2}{v}^{2}-195\,{v}^{3}\sin \left( v \right) \\&+ 18\,{v}^{4}+2304\, \left( \cos \left( v \right) \right) ^{3}-414\,\cos \left( v \right) v\sin \left( v \right) \\&+ 162\,{v}^{2}\cos \left( v \right) -4608\, \left( \cos \left( v \right) \right) ^{2}\\&+ 414\,v\sin \left( v \right) -324\,{v}^{2} + 2304\,\cos \left( v \right) \\ T_{4} \left( v \right)= & {} \left( \cos \left( v \right) \right) ^{2}{v}^{6}+70\,\cos \left( v \right) \sin \left( v \right) {v}^{5}\\&+ 65\,\cos \left( v \right) {v}^{6}-435\, \left( \cos \left( v \right) \right) ^{2}{v}^{4}\\ \end{aligned}$$
$$\begin{aligned}&+ 350\,{v}^{5}\sin \left( v \right) +80\,{v}^{6}-1395\,\cos \left( v \right) {v}^{3}\sin \left( v \right) \\&- 435\,\cos \left( v \right) {v}^{4}+1920\, \left( \cos \left( v \right) \right) ^{2}{v}^{2}\\&+ 1395\,{v}^{3}\sin \left( v \right) +870\,{v}^{4}+23040\, \left( \cos \left( v \right) \right) ^{3}\\&- 3840\,{v}^{2}\cos \left( v \right) -69120\, \left( \cos \left( v \right) \right) ^{2}\\&+ 1920\,{v}^{2} + 69120\,\cos \left( v \right) -23040 \\ T_{denom0} \left( v \right)= & {} \left( \cos \left( v \right) \right) ^{2}{v}^{6}+8\,\cos \left( v \right) \sin \left( v \right) {v}^{5}\\&+ 13\,\cos \left( v \right) {v}^{6}-30\, \left( \cos \left( v \right) \right) ^{2}{v}^{4}+40\,{v}^{5}\sin \left( v \right) \\&+ 16\,{v}^{6}-75\,\cos \left( v \right) {v}^{3}\sin \left( v \right) -138\,\cos \left( v \right) {v}^{4}\\&- 9\, \left( \cos \left( v \right) \right) ^{2}{v}^{2}-249\,{v}^{3}\sin \left( v \right) -102\,{v}^{4}\\&+ 1152\, \left( \cos \left( v \right) \right) ^{3}-585\,\cos \left( v \right) v\sin \left( v \right) -9\,{v}^{2}\cos \left( v \right) \\&- 2304\, \left( \cos \left( v \right) \right) ^{2}+585\,v\sin \left( v \right) +18\,{v}^{2}+1152\,\cos \left( v \right) \\ T_{denom1} \left( v \right)= & {} \left( \cos \left( v \right) \right) ^{2}{v}^{6}+10\,\cos \left( v \right) \sin \left( v \right) {v}^{5}\\ \end{aligned}$$
$$\begin{aligned}&+ 13\,\cos \left( v \right) {v}^{6}-43\, \left( \cos \left( v \right) \right) ^{2}{v}^{4}+50\,{v}^{5}\sin \left( v \right) \\&+ 16\,{v}^{6}-99\,\cos \left( v \right) {v}^{3}\sin \left( v \right) -139\,\cos \left( v \right) {v}^{4}\\&+ 72\, \left( \cos \left( v \right) \right) ^{2}{v}^{2}-285\,{v}^{3}\sin \left( v \right) -58\,{v}^{4}\\&+ 1536\, \left( \cos \left( v \right) \right) ^{3}-696\,\cos \left( v \right) v\sin \left( v \right) \\&+ 72\,{v}^{2}\cos \left( v \right) -3072\, \left( \cos \left( v \right) \right) ^{2}\\&+ 696\,v\sin \left( v \right) -144\,{v}^{2}+1536\,\cos \left( v \right) \\ T_{denom2} \left( v \right)= & {} \left( \cos \left( v \right) \right) ^{2}{v}^{6}+12\,\cos \left( v \right) \sin \left( v \right) {v}^{5}\\&+ 13\,\cos \left( v \right) {v}^{6}-63\, \left( \cos \left( v \right) \right) ^{2}{v}^{4}+60\,{v}^{5}\sin \left( v \right) \\&+ 16\,{v}^{6}-165\,\cos \left( v \right) {v}^{3}\sin \left( v \right) -135\,\cos \left( v \right) {v}^{4}\\&+ 162\, \left( \cos \left( v \right) \right) ^{2}{v}^{2}-195\,{v}^{3}\sin \left( v \right) +18\,{v}^{4}\\&+ 2304\, \left( \cos \left( v \right) \right) ^{3}-414\,\cos \left( v \right) v\sin \left( v \right) \\&+ 162\,{v}^{2}\cos \left( v \right) -4608\, \left( \cos \left( v \right) \right) ^{2}\\&+ 414\,v\sin \left( v \right) -324\,{v}^{2} + 2304\,\cos \left( v \right) \\ T_{denom3} \left( v \right)= & {} \left( \cos \left( v \right) \right) ^{2}{v}^{4}+13\,\cos \left( v \right) {v}^{4}\\&+ 14\,\cos \left( v \right) {v}^{3}\sin \left( v \right) +16\,{v}^{4}+70\,{v}^{3}\sin \left( v \right) \\&- 87\, \left( \cos \left( v \right) \right) ^{2}{v}^{2} - 87\,{v}^{2}\cos \left( v \right) \\&- 279\,\cos \left( v \right) v\sin \left( v \right) +384\, \left( \cos \left( v \right) \right) ^{3}\\&+ 174\,{v}^{2}+279\,v\sin \left( v \right) -768\, \left( \cos \left( v \right) \right) ^{2}+384\,\cos \left( v \right) \end{aligned}$$

Appendix B

$$\begin{aligned} LTE_{CL}= & {} LTE_{NM2S5SDVD} = LTE_{NM2S5SDVD2} = LTE_{NM2S5SDVD3} \\= & {} LTE_{NM2S5SDVD4} =\,\approx h^{14} \, \vartheta _{0}\\= & {} h^{14} \Biggl [ -{\frac{351719\,g \left( x \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) \left( {\frac{{\mathrm{d}}^{6}}{{\mathrm{d}}{x}^{6}}}g \left( x \right) \right) {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) }{8491392000}}\\&- {\frac{253597\,g \left( x \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) \left( {\frac{{\mathrm{d}}^{5}}{{\mathrm{d}}{x}^{5}}}g \left( x \right) \right) {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) }{2830464000}}\\&- {\frac{54589\,g \left( x \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) \left( {\frac{{\mathrm{d}}^{4}}{{\mathrm{d}}{x}^{4}}}g \left( x \right) \right) {\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) }{424569600}}\\&-{\frac{1292861\,g \left( x \right) y \left( x \right) \left( {\frac{{\mathrm{d}}^{7}}{{\mathrm{d}}{x}^{7}}}g \left( x \right) \right) {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) }{59439744000}}\\&- {\frac{1989389\,g \left( x \right) y \left( x \right) \left( {\frac{{\mathrm{d}}^{6}}{{\mathrm{d}}{x}^{6}}}g \left( x \right) \right) {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) }{39626496000}}\\&-{\frac{2405371\,g \left( x \right) y \left( x \right) \left( {\frac{{\mathrm{d}}^{5}}{{\mathrm{d}}{x}^{5}}}g \left( x \right) \right) {\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) }{29719872000}}\\&- {\frac{434639\, \left( g \left( x \right) \right) ^{2}y \left( x \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) ^{2}{\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) }{4245696000}}\\ \end{aligned}$$
$$\begin{aligned}&-{\frac{691\, \left( g \left( x \right) \right) ^{3} \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) }{35380800}}\\&- {\frac{78083\, \left( g \left( x \right) \right) ^{4}y \left( x \right) {\frac{{\mathrm{d}}^{4}}{{\mathrm{d}}{x}^{4}}}g \left( x \right) }{16982784000}}\\&-{\frac{15893\,g \left( x \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) {\frac{{\mathrm{d}}^{9}}{{\mathrm{d}}{x}^{9}}}g \left( x \right) }{11887948800}}\\&- {\frac{691\, \left( g \left( x \right) \right) ^{4} \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) {\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) }{283046400}}\\&-{\frac{691\,g \left( x \right) y \left( x \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) ^{4}}{32659200}}\\&- {\frac{373831\, \left( g \left( x \right) \right) ^{2}y \left( x \right) {\frac{{\mathrm{d}}^{8}}{{\mathrm{d}}{x}^{8}}}g \left( x \right) }{118879488000}}\\&-{\frac{803633\, \left( g \left( x \right) \right) ^{3}y \left( x \right) {\frac{{\mathrm{d}}^{6}}{{\mathrm{d}}{x}^{6}}}g \left( x \right) }{118879488000}}\\&- {\frac{330989\, \left( g \left( x \right) \right) ^{2}y \left( x \right) \left( {\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) \right) ^{2}}{4953312000}}\\&-{\frac{187261\,g \left( x \right) y \left( x \right) \left( {\frac{{\mathrm{d}}^{4}}{{\mathrm{d}}{x}^{4}}}g \left( x \right) \right) ^{2}}{3962649600}}\\ \end{aligned}$$
$$\begin{aligned}&- {\frac{54589\, \left( g \left( x \right) \right) ^{3} \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) {\frac{{\mathrm{d}}^{5}}{{\mathrm{d}}{x}^{5}}}g \left( x \right) }{8491392000}}\\&-{\frac{691\, \left( g \left( x \right) \right) ^{5} \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) }{2830464000}}\\&- {\frac{71173\,g \left( x \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) \left( {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) \right) ^{2}}{404352000}}\\&-{\frac{691\, \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) \left( {\frac{{\mathrm{d}}^{4}}{{\mathrm{d}}{x}^{4}}}g \left( x \right) \right) {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) }{2808000}}\\&- {\frac{7601\, \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) ^{3} \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) }{88452000}}\\&-{\frac{129217\, \left( {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) \right) y \left( x \right) {\frac{{\mathrm{d}}^{8}}{{\mathrm{d}}{x}^{8}}}g \left( x \right) }{39626496000}}\\ \end{aligned}$$
$$\begin{aligned}&- {\frac{46297\,g \left( x \right) y \left( x \right) {\frac{{\mathrm{d}}^{10}}{{\mathrm{d}}{x}^{10}}}g \left( x \right) }{118879488000}}\\&-{\frac{691\, \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) ^{3}y \left( x \right) {\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) }{9144576}}\\&- {\frac{567311\, \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) y \left( x \right) \left( {\frac{{\mathrm{d}}^{4}}{{\mathrm{d}}{x}^{4}}}g \left( x \right) \right) {\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) }{3962649600}}\\&-{\frac{444313\, \left( g \left( x \right) \right) ^{3}y \left( x \right) \left( {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) \right) ^{2}}{16982784000}}\\&- {\frac{3363097\,g \left( x \right) y \left( x \right) \left( {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) \right) ^{3}}{39626496000}}\\&-{\frac{32477\, \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) y \left( x \right) \left( {\frac{{\mathrm{d}}^{5}}{{\mathrm{d}}{x}^{5}}}g \left( x \right) \right) {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) }{309582000}}\\&- {\frac{42151\, \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) {\frac{{\mathrm{d}}^{8}}{{\mathrm{d}}{x}^{8}}}g \left( x \right) }{6604416000}}\\&-{\frac{7601\, \left( {\frac{{\mathrm{d}}^{4}}{{\mathrm{d}}{x}^{4}}}g \left( x \right) \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) {\frac{{\mathrm{d}}^{5}}{{\mathrm{d}}{x}^{5}}}g \left( x \right) }{188697600}}\\ \end{aligned}$$
$$\begin{aligned}&- {\frac{691\, \left( g \left( x \right) \right) ^{2} \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) ^{3}}{47174400}}\\&-{\frac{326843\, \left( {\frac{{\mathrm{d}}^{4}}{{\mathrm{d}}{x}^{4}}}g \left( x \right) \right) y \left( x \right) {\frac{{\mathrm{d}}^{6}}{{\mathrm{d}}{x}^{6}}}g \left( x \right) }{39626496000}}\\&- {\frac{691\, \left( {\frac{{\mathrm{d}}^{12}}{{\mathrm{d}}{x}^{12}}}g \left( x \right) \right) y \left( x \right) }{118879488000}}\\&-{\frac{691\, \left( {\frac{{\mathrm{d}}^{11}}{{\mathrm{d}}{x}^{11}}}g \left( x \right) \right) {\frac{\mathrm{d}}{{\mathrm{d}}x}}y \left( x \right) }{9906624000}}\\&- {\frac{15893\, \left( g \left( x \right) \right) ^{5}y \left( x \right) {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) }{16982784000}}\\&-{\frac{277091\, \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) ^{2}y \left( x \right) {\frac{{\mathrm{d}}^{6}}{{\mathrm{d}}{x}^{6}}}g \left( x \right) }{9906624000}}\\&- {\frac{691\, \left( g \left( x \right) \right) ^{7}y \left( x \right) }{118879488000}}\\&-{\frac{7601\, \left( {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) \right) ^{2} \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) {\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) }{40435200}}\\&- {\frac{3200021\, \left( {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) \right) ^{2}y \left( x \right) {\frac{{\mathrm{d}}^{4}}{{\mathrm{d}}{x}^{4}}}g \left( x \right) }{39626496000}}\\ \end{aligned}$$
$$\begin{aligned}&-{\frac{20039\, \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) y \left( x \right) {\frac{{\mathrm{d}}^{9}}{{\mathrm{d}}{x}^{9}}}g \left( x \right) }{14859936000}}\\&- {\frac{21421\,g \left( x \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) ^{2}{\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) }{157248000}}\\&-{\frac{691\,g \left( x \right) y \left( x \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) ^{2}{\frac{{\mathrm{d}}^{4}}{{\mathrm{d}}{x}^{4}}}g \left( x \right) }{5080320}}\\&- {\frac{691\, \left( g \left( x \right) \right) ^{2} \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) \left( {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) \right) {\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) }{7581600}}\\&-{\frac{241159\, \left( g \left( x \right) \right) ^{2} \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) {\frac{{\mathrm{d}}^{4}}{{\mathrm{d}}{x}^{4}}}g \left( x \right) }{4245696000}}\\&- {\frac{6514057\, \left( g \left( x \right) \right) ^{2}y \left( x \right) \left( {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) \right) {\frac{{\mathrm{d}}^{4}}{{\mathrm{d}}{x}^{4}}}g \left( x \right) }{59439744000}}\\&-{\frac{1761359\, \left( g \left( x \right) \right) ^{2}y \left( x \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) {\frac{{\mathrm{d}}^{5}}{{\mathrm{d}}{x}^{5}}}g \left( x \right) }{29719872000}}\\&- {\frac{174823\, \left( {\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) \right) y \left( x \right) {\frac{{\mathrm{d}}^{7}}{{\mathrm{d}}{x}^{7}}}g \left( x \right) }{29719872000}}\\&-{\frac{15893\, \left( g \left( x \right) \right) ^{2} \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) {\frac{{\mathrm{d}}^{7}}{{\mathrm{d}}{x}^{7}}}g \left( x \right) }{2971987200}}\\ \end{aligned}$$
$$\begin{aligned}&- {\frac{691\, \left( g \left( x \right) \right) ^{4}y \left( x \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) ^{2}}{212284800}}\\&-{\frac{315787\, \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) \left( {\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) \right) ^{2}}{2122848000}}\\&- {\frac{7601\, \left( {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) \right) y \left( x \right) \left( {\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) \right) ^{2}}{81648000}}\\&-{\frac{83611\, \left( {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) {\frac{{\mathrm{d}}^{7}}{{\mathrm{d}}{x}^{7}}}g \left( x \right) }{4953312000}}\\&- {\frac{1348141\, \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) ^{2}y \left( x \right) \left( {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) \right) ^{2}}{9906624000}}\\&-{\frac{129217\, \left( {\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) {\frac{{\mathrm{d}}^{6}}{{\mathrm{d}}{x}^{6}}}g \left( x \right) }{4245696000}}\\&- {\frac{15893\, \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) ^{2} \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}\varphi \left( x \right) \right) {\frac{{\mathrm{d}}^{5}}{{\mathrm{d}}{x}^{5}}}g \left( x \right) }{235872000}}\\&-{\frac{7601\, \left( {\frac{{\mathrm{d}}^{5}}{{\mathrm{d}}{x}^{5}}}g \left( x \right) \right) ^{2}y \left( x \right) }{1651104000}}\\&- {\frac{49061\, \left( g \left( x \right) \right) ^{3}y \left( x \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) {\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) }{1213056000}}\\&-{\frac{8162783\,g \left( x \right) y \left( x \right) \left( {\frac{\mathrm{d}}{{\mathrm{d}}x}}g \left( x \right) \right) \left( {\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}{x}^{2}}}g \left( x \right) \right) {\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}{x}^{3}}}g \left( x \right) }{19813248000}} \Biggr ] \end{aligned}$$

where \(\varphi \left( x \right) = \varphi _{n}\).

Appendix C

$$\begin{aligned} T_{5}\left( s,v \right)= & {} -8280\,\sin \left( v \right) {s}^{4}{v}^{7}-23040\,\cos \left( v \right) {s}^{8}{v}^{2}\\&+46080\,\cos \left( v \right) {s}^{6}{v}^{4}\\&- 46080\,\cos \left( v \right) {s}^{4}{v}^{6}\\&+69120\,\cos \left( v \right) {s}^{2}{v}^{8}-192\,{v}^{14}+46080\, \left( \cos \left( v \right) \right) ^{2}{s}^{8}{v}^{2}\\&- 92160\, \left( \cos \left( v \right) \right) ^{2}{s}^{6}{v}^{4}+92160\, \left( \cos \left( v \right) \right) ^{2}{s}^{4}{v}^{6}\\&-69120\, \left( \cos \left( v \right) \right) ^{2}{s}^{2}{v}^{8}\\&- 2088\,{v}^{12}-123\, \left( \cos \left( v \right) \right) ^{2}{s}^{10}{v}^{4}+600\, \left( \cos \left( v \right) \right) ^{2}{s}^{8}{v}^{6}\\&-1290\, \left( \cos \left( v \right) \right) ^{2}{s}^{6}{v}^{8}\\&+ 1260\, \left( \cos \left( v \right) \right) ^{2}{s}^{4}{v}^{10}-435\, \left( \cos \left( v \right) \right) ^{2}{s}^{2}{v}^{12}\\&+150\,\sin \left( v \right) {s}^{10}{v}^{5}\\&- 800\,\sin \left( v \right) {s}^{8}{v}^{7}+1500\,\sin \left( v \right) {s}^{6}{v}^{9}\\&- 1200\,\sin \left( v \right) {s}^{4}{v}^{11}+350\,\sin \left( v \right) {s}^{2}{v}^{13}\\&-168\,\cos \left( v \right) \sin \left( v \right) {v}^{13}\\ \end{aligned}$$
$$\begin{aligned}&- 699\,\cos \left( v \right) {s}^{10}{v}^{4}+2760\,\cos \left( v \right) {s}^{8}{v}^{6}-4170\,\cos \left( v \right) {s}^{6}{v}^{8}\\&+2700\,\cos \left( v \right) {s}^{4}{v}^{10}\\&- 435\,\cos \left( v \right) {s}^{2}{v}^{12}-144\, \left( \cos \left( v \right) \right) ^{2}{s}^{10}{v}^{2}+2448\,\sin \left( v \right) {s}^{10}v\\&-11700\,\sin \left( v \right) {s}^{8}{v}^{3}\\&+ 20880\,\sin \left( v \right) {s}^{6}{v}^{5}+1500\,\cos \left( v \right) \sin \left( v \right) {s}^{8}{v}^{5}\\&- 2970\,\cos \left( v \right) \sin \left( v \right) {s}^{6}{v}^{7}+3300\,\cos \left( v \right) \sin \left( v \right) {s}^{4}{v}^{9}\\&- 1395\,\cos \left( v \right) \sin \left( v \right) {s}^{2}{v}^{11}-2448\,\cos \left( v \right) \sin \left( v \right) {s}^{10}v\\&+11700\,\cos \left( v \right) \sin \left( v \right) {s}^{8}{v}^{3}\\&- 20880\,\cos \left( v \right) \sin \left( v \right) {s}^{6}{v}^{5}+8280\,\cos \left( v \right) \sin \left( v \right) {s}^{4}{v}^{7}\\&+5\, \left( \cos \left( v \right) \right) ^{2}{s}^{10}{v}^{6}\\&- 20\, \left( \cos \left( v \right) \right) ^{2}{s}^{8}{v}^{8}+30\, \left( \cos \left( v \right) \right) ^{2}{s}^{6}{v}^{10}\\&-20\, \left( \cos \left( v \right) \right) ^{2}{s}^{4}{v}^{12}\\&+ 5\, \left( \cos \left( v \right) \right) ^{2}{s}^{2}{v}^{14}+65\,\cos \left( v \right) {s}^{10}{v}^{6}-260\,\cos \left( v \right) {s}^{8}{v}^{8}\\ \end{aligned}$$
$$\begin{aligned}&+390\,\cos \left( v \right) {s}^{6}{v}^{10}\\&- 260\,\cos \left( v \right) {s}^{4}{v}^{12}+65\,\cos \left( v \right) {s}^{2}{v}^{14}-4320\,{s}^{6}{v}^{6}+6480\,{s}^{4}{v}^{8}\\&+1920\,{s}^{2}{v}^{10} -23040\,{s}^{2}{v}^{8}\\&- 12\, \left( \cos \left( v \right) \right) ^{2}{v}^{14}-156\,\cos \left( v \right) {v}^{14}\\&+1044\, \left( \cos \left( v \right) \right) ^{2}{v}^{12}-840\,\sin \left( v \right) {v}^{13}\\&+ 4608\, \left( \cos \left( v \right) \right) ^{3}{s}^{10}-4608\, \left( \cos \left( v \right) \right) ^{3}{v}^{10}\\&+1044\,\cos \left( v \right) {v}^{12}-9216\, \left( \cos \left( v \right) \right) ^{2}{s}^{10}\\&+ 9216\, \left( \cos \left( v \right) \right) ^{2}{v}^{10}-3348\,\sin \left( v \right) {v}^{11}+4608\,\cos \left( v \right) {s}^{10}\\&-4608\,\cos \left( v \right) {v}^{10}\\&+ 30\,\cos \left( v \right) \sin \left( v \right) {s}^{10}{v}^{5}-160\,\cos \left( v \right) \sin \left( v \right) {s}^{8}{v}^{7}\\&+ 300\,\cos \left( v \right) \sin \left( v \right) {s}^{6}{v}^{9}-240\,\cos \left( v \right) \sin \left( v \right) {s}^{4}{v}^{11}\\&+ 70\,\cos \left( v \right) \sin \left( v \right) {s}^{2}{v}^{13}-267\,\cos \left( v \right) \sin \left( v \right) {s}^{10}{v}^{3}\\&+180\, \left( \cos \left( v \right) \right) ^{2}{s}^{8}{v}^{4}\\&+ 2160\, \left( \cos \left( v \right) \right) ^{2}{s}^{6}{v}^{6}-3240\, \left( \cos \left( v \right) \right) ^{2}{s}^{4}{v}^{8}\\ \end{aligned}$$
$$\begin{aligned}&+1920\, \left( \cos \left( v \right) \right) ^{2}{s}^{2}{v}^{10}\\&- 885\,\sin \left( v \right) {s}^{10}{v}^{3}+4980\,\sin \left( v \right) {s}^{8}{v}^{5}\\&-8550\,\sin \left( v \right) {s}^{6}{v}^{7}+3900\,\sin \left( v \right) {s}^{4}{v}^{9}\\&+ 1395\,\sin \left( v \right) {s}^{2}{v}^{11}-23040\, \left( \cos \left( v \right) \right) ^{3}{s}^{8}{v}^{2}\\&+46080\, \left( \cos \left( v \right) \right) ^{3}{s}^{6}{v}^{4}\\&- 46080\, \left( \cos \left( v \right) \right) ^{3}{s}^{4}{v}^{6}+23040\, \left( \cos \left( v \right) \right) ^{3}{s}^{2}{v}^{8}\\&+3348\,\cos \left( v \right) \sin \left( v \right) {v}^{11}\\&- 144\,\cos \left( v \right) {s}^{10}{v}^{2}+180\,\cos \left( v \right) {s}^{8}{v}^{4}\\&+2160\,\cos \left( v \right) {s}^{6}{v}^{6}\\&- 3240\,\cos \left( v \right) {s}^{4}{v}^{8}-3840\,\cos \left( v \right) {s}^{2}{v}^{10}\\&+80\,{s}^{10}{v}^{6}-320\,{s}^{8}{v}^{8}+480\,{s}^{6}{v}^{10}-320\,{s}^{4}{v}^{12}\\&+80\,{s}^{2}{v}^{14}\\&-618\,{s}^{10}{v}^{4}+2040\,{s}^{8}{v}^{6}\\&- 1740\,{s}^{6}{v}^{8}-360\,{s}^{4}{v}^{10}+870\,{s}^{2}{v}^{12}\\&+288\,{s}^{10}{v}^{2}-360\,{s}^{8}{v}^{4}\\ T_{6}\left( s,v \right)= & {} -8280\,\sin \left( v \right) {s}^{4}{v}^{7}-23040\,\cos \left( v \right) {s}^{8}{v}^{2}\\&+46080\,\cos \left( v \right) {s}^{6}{v}^{4}\\&- 46080\,\cos \left( v \right) {s}^{4}{v}^{6}-192\,{v}^{14}+46080\, \left( \cos \left( v \right) \right) ^{2}{s}^{8}{v}^{2}\\&-92160\, \left( \cos \left( v \right) \right) ^{2}{s}^{6}{v}^{4}\\ \end{aligned}$$
$$\begin{aligned}&+ 92160\, \left( \cos \left( v \right) \right) ^{2}{s}^{4}{v}^{6}-2088\,{v}^{12}\\&-123\, \left( \cos \left( v \right) \right) ^{2}{s}^{10}{v}^{4}+600\, \left( \cos \left( v \right) \right) ^{2}{s}^{8}{v}^{6}\\&- 1290\, \left( \cos \left( v \right) \right) ^{2}{s}^{6}{v}^{8}+1260\, \left( \cos \left( v \right) \right) ^{2}{s}^{4}{v}^{10}\\&-435\, \left( \cos \left( v \right) \right) ^{2}{s}^{2}{v}^{12}\\&+ 150\,\sin \left( v \right) {s}^{10}{v}^{5}-800\,\sin \left( v \right) {s}^{8}{v}^{7}\\&+1500\,\sin \left( v \right) {s}^{6}{v}^{9}-1200\,\sin \left( v \right) {s}^{4}{v}^{11}\\&+ 350\,\sin \left( v \right) {s}^{2}{v}^{13}-168\,\cos \left( v \right) \sin \left( v \right) {v}^{13}\\&-699\,\cos \left( v \right) {s}^{10}{v}^{4}+2760\,\cos \left( v \right) {s}^{8}{v}^{6}\\&- 4170\,\cos \left( v \right) {s}^{6}{v}^{8}+2700\,\cos \left( v \right) {s}^{4}{v}^{10}\\&-435\,\cos \left( v \right) {s}^{2}{v}^{12}-144\, \left( \cos \left( v \right) \right) ^{2}{s}^{10}{v}^{2}\\&+ 2448\,\sin \left( v \right) {s}^{10}v-11700\,\sin \left( v \right) {s}^{8}{v}^{3}\\&+20880\,\sin \left( v \right) {s}^{6}{v}^{5}+1500\,\cos \left( v \right) \sin \left( v \right) {s}^{8}{v}^{5}\\&- 2970\,\cos \left( v \right) \sin \left( v \right) {s}^{6}{v}^{7}+3300\,\cos \left( v \right) \sin \left( v \right) {s}^{4}{v}^{9}\\&-1395\,\cos \left( v \right) \sin \left( v \right) {s}^{2}{v}^{11}\\ \end{aligned}$$
$$\begin{aligned}&- 2448\,\cos \left( v \right) \sin \left( v \right) {s}^{10}v+11700\,\cos \left( v \right) \sin \left( v \right) {s}^{8}{v}^{3}\\&-20880\,\cos \left( v \right) \sin \left( v \right) {s}^{6}{v}^{5}\\&+ 8280\,\cos \left( v \right) \sin \left( v \right) {s}^{4}{v}^{7}+5\, \left( \cos \left( v \right) \right) ^{2}{s}^{10}{v}^{6}\\&-20\, \left( \cos \left( v \right) \right) ^{2}{s}^{8}{v}^{8}\\&+ 30\, \left( \cos \left( v \right) \right) ^{2}{s}^{6}{v}^{10}-20\, \left( \cos \left( v \right) \right) ^{2}{s}^{4}{v}^{12}\\&+5\, \left( \cos \left( v \right) \right) ^{2}{s}^{2}{v}^{14}\\&+ 65\,\cos \left( v \right) {s}^{10}{v}^{6}-260\,\cos \left( v \right) {s}^{8}{v}^{8}\\&+390\,\cos \left( v \right) {s}^{6}{v}^{10}\\&- 260\,\cos \left( v \right) {s}^{4}{v}^{12}+65\,\cos \left( v \right) {s}^{2}{v}^{14}\\&- 4320\,{s}^{6}{v}^{6}+6480\,{s}^{4}{v}^{8}-12\, \left( \cos \left( v \right) \right) ^{2}{v}^{14}\\&-156\,\cos \left( v \right) {v}^{14}+1044\, \left( \cos \left( v \right) \right) ^{2}{v}^{12}\\&- 840\,\sin \left( v \right) {v}^{13}\\&+4608\, \left( \cos \left( v \right) \right) ^{3}{s}^{10}-4608\, \left( \cos \left( v \right) \right) ^{3}{v}^{10}+1044\,\cos \left( v \right) {v}^{12}\\&- 9216\, \left( \cos \left( v \right) \right) ^{2}{s}^{10}+9216\, \left( \cos \left( v \right) \right) ^{2}{v}^{10}\\&-3348\,\sin \left( v \right) {v}^{11}+4608\,\cos \left( v \right) {s}^{10}\\ \end{aligned}$$
$$\begin{aligned}&- 4608\,\cos \left( v \right) {v}^{10}+30\,\cos \left( v \right) \sin \left( v \right) {s}^{10}{v}^{5}\\&- 160\,\cos \left( v \right) \sin \left( v \right) {s}^{8}{v}^{7}+300\,\cos \left( v \right) \sin \left( v \right) {s}^{6}{v}^{9}\\&- 240\,\cos \left( v \right) \sin \left( v \right) {s}^{4}{v}^{11}+70\,\cos \left( v \right) \sin \left( v \right) {s}^{2}{v}^{13}\\&- 267\,\cos \left( v \right) \sin \left( v \right) {s}^{10}{v}^{3}+180\, \left( \cos \left( v \right) \right) ^{2}{s}^{8}{v}^{4}\\&+ 2160\, \left( \cos \left( v \right) \right) ^{2}{s}^{6}{v}^{6}-3240\, \left( \cos \left( v \right) \right) ^{2}{s}^{4}{v}^{8}\\&-3840\, \left( \cos \left( v \right) \right) ^{2}{s}^{2}{v}^{10}\\&- 885\,\sin \left( v \right) {s}^{10}{v}^{3}+4980\,\sin \left( v \right) {s}^{8}{v}^{5}\\&-8550\,\sin \left( v \right) {s}^{6}{v}^{7}+3900\,\sin \left( v \right) {s}^{4}{v}^{9}\\&+ 1395\,\sin \left( v \right) {s}^{2}{v}^{11}-23040\, \left( \cos \left( v \right) \right) ^{3}{s}^{8}{v}^{2}\\&+46080\, \left( \cos \left( v \right) \right) ^{3}{s}^{6}{v}^{4}\\&- 46080\, \left( \cos \left( v \right) \right) ^{3}{s}^{4}{v}^{6}+3348\,\cos \left( v \right) \sin \left( v \right) {v}^{11}\\&-144\,\cos \left( v \right) {s}^{10}{v}^{2}+180\,\cos \left( v \right) {s}^{8}{v}^{4}\\&+ 2160\,\cos \left( v \right) {s}^{6}{v}^{6}-3240\,\cos \left( v \right) {s}^{4}{v}^{8}\\&+1920\,\cos \left( v \right) {s}^{2}{v}^{10}+80\,{s}^{10}{v}^{6}-320\,{s}^{8}{v}^{8}\\ \end{aligned}$$
$$\begin{aligned}&+ 480\,{s}^{6}{v}^{10}-320\,{s}^{4}{v}^{12}\\&+80\,{s}^{2}{v}^{14}-618\,{s}^{10}{v}^{4}+2040\,{s}^{8}{v}^{6}-1740\,{s}^{6}{v}^{8}-360\,{s}^{4}{v}^{10}\\&+ 870\,{s}^{2}{v}^{12}+288\,{s}^{10}{v}^{2}-360\,{s}^{8}{v}^{4}+1920\, \left( \cos \left( v \right) \right) ^{3}{s}^{2}{v}^{10}\\ T_{denom4} \left( v \right)= & {} \left( \cos \left( v \right) \right) ^{2}{v}^{4}+13\,\cos \left( v \right) {v}^{4}\\&+ 14\,\cos \left( v \right) {v}^{3}\sin \left( v \right) +16\,{v}^{4}+70\,{v}^{3}\sin \left( v \right) \\&- 87\, \left( \cos \left( v \right) \right) ^{2}{v}^{2} - 87\,{v}^{2}\cos \left( v \right) \\&- 279\,\cos \left( v \right) v\sin \left( v \right) +384\, \left( \cos \left( v \right) \right) ^{3}\\&+ 174\,{v}^{2}+279\,v\sin \left( v \right) -768\, \left( \cos \left( v \right) \right) ^{2}+384\,\cos \left( v \right) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalnogov, V.N., Fedorov, R.V., Bondarenko, A.A. et al. New hybrid two-step method with optimized phase and stability characteristics. J Math Chem 56, 2302–2340 (2018). https://doi.org/10.1007/s10910-018-0894-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0894-5

Keywords

Mathematics Subject Classification

Navigation