Journal of Mathematical Chemistry

, Volume 55, Issue 6, pp 1301–1321 | Cite as

Cu-wire-mediated dipyrimidine base pairs as the building blocks for  conductive and magnetic Cu–DNA  nanowires

Original Paper
  • 161 Downloads

Abstract

2Cu-mediated DNA dipyrimidine base pairs and 3Cu-mediated ones are designed and determined at the DFT level. The multi-Cu decoration modulates the orbital hybridization, which exhibits increased structural stability, reduced ionization potentials and HOMO–LUMO gaps. The Cu d orbitals in Cu-mediated base pairs function as bridges for improving \(\uppi \) electron delocalization over two bases, which are verified by spin density delocalization and orbital composition changes. The 3Cu-mediated dipyrimidines exhibit radical properties as molecular magnets and their singly occupied HOMO(\(\upalpha )\), unoccupied LUMO(\(\upalpha )\) and LUMO(\(\upbeta )\) distribute over entire base pairs and thus largely promote conductivity. The aromaticity and magnetic properties are evaluated via nuclear independent chemical shift and anisotropic diamagnetic susceptibility. The electron localization function isosurfaces demonstrate effective longitudinal conductivity on aromatic bicyclic domain and strong \(\uppi \)\(\uppi \) stacking between layers. Theoretical evidences are presented for the innovative multi-Cu decoration and dipyrimidine assembly on the improvement of conductive and magnetic properties for Cu–DNA nanowires.

Keywords

Dipyrimidine Metalized DNA Spin delocalization Orbital composition Density functional theory 

Notes

Acknowledgements

This work was supported by NSFC (21373123), and NSF (ZR2014BQ026) of Shandong Province.

Supplementary material

10910_2017_744_MOESM1_ESM.pdf (2.7 mb)
Supplementary material 1 (pdf 2741 KB)

References

  1. 1.
    E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, Nature 391, 775 (1998)CrossRefGoogle Scholar
  2. 2.
    A. Rakitin, P. Aich, C. Papadopoulos, Y. Kobzar, A.S. Vedeneev, J.S. Lee, J.M. Xu, Phys. Rev. Lett. 86, 3670 (2011)CrossRefGoogle Scholar
  3. 3.
    G. Rikken, Science 331, 864 (2011)CrossRefGoogle Scholar
  4. 4.
    J.-M. Nam, C.S. Thaxton, C.A. Mirkin, Science 301, 1884 (2003)CrossRefGoogle Scholar
  5. 5.
    T. Lu, B.R. Goldsmith, N.J. Kybert, A.T.C. Johnson, Appl. Phys. Lett. 97, 083107 (2010)CrossRefGoogle Scholar
  6. 6.
    H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, T.H. LaBean, Science 301, 1882 (2003)CrossRefGoogle Scholar
  7. 7.
    J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu, H. Yan, Science 323, 112 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Ono, H. Torigoe, Y. Tanaka, I. Okamoto, Chem. Soc. Rev. 40, 5855 (2011)CrossRefGoogle Scholar
  9. 9.
    D.A. Megger, C.F. Guerra, F.M. Bickelhaupt, J. Müller J. Inorg. Biochem. 105, 1398 (2011)CrossRefGoogle Scholar
  10. 10.
    Y. Takezawa, M. Shionoya, Acc. Chem. Res. 45, 2066 (2012)CrossRefGoogle Scholar
  11. 11.
    P. Scharf, J. Müller, Chem. Plus. Chem. 78, 20 (2013)Google Scholar
  12. 12.
    F.-A. Polonius, J. Müller, Angew. Chem. 119, 5698 (2007)CrossRefGoogle Scholar
  13. 13.
    T. Ehrenschwender, W. Schmucker, C. Wellner, T. Augenstein, P. Carl, J. Harmer, F. Breher, H.-A. Wagenknecht, Chem. Eur. J. 19, 12547 (2013)CrossRefGoogle Scholar
  14. 14.
    D.-L. Ma, H.-Z. He, K.-H. Leung, H.-J. Zhong, D.S.-H. Chan, C.-H. Leung, Chem. Soc. Rev. 42, 3427 (2013)CrossRefGoogle Scholar
  15. 15.
    Y. Weizmann, D.M. Chenoweth, T.M. Swager, J. Am. Chem. Soc. 133, 3238 (2011)CrossRefGoogle Scholar
  16. 16.
    H.-Y. Park, S.R. Dugasani, D.-H. Kang, ACS Nano 8, 11603 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Noguera, J. Bertran, M. Sodupe, J. Phys. Chem. B 112, 4817 (2008)CrossRefGoogle Scholar
  18. 18.
    T. Richters, J. Müller, Eur. J. Inorg. Chem. 3, 437 (2014)CrossRefGoogle Scholar
  19. 19.
    M.H. Shamsi, H.-B. Kraatz, J. Inorg. Organomet. Polym. 23, 4 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Noguera, V. Branchadell, E. Costantino, R. Rios-Font, M. Sodupe, L. Rodríguez-Santiago, J. Phys. Chem. A 111, 9823 (2007)CrossRefGoogle Scholar
  21. 21.
    G. Brancolini, R. Di Felice, J. Phys. Chem. B 112, 14281 (2008)CrossRefGoogle Scholar
  22. 22.
    S.S. Mallajosyula, S.K. Pati, Angew. Chem., Int. Ed. 48, 4977 (2009)CrossRefGoogle Scholar
  23. 23.
    J.C. Ribot, A. Chatterjee, P. Nagpal, J. Phys. Chem. B 119, 4968 (2015)CrossRefGoogle Scholar
  24. 24.
    N. Lu, Y.X. Bu, H.T. Wang, Phys. Chem. Chem. Phys. 18, 2913 (2016)CrossRefGoogle Scholar
  25. 25.
    N. Tolstoluzhsky, P. Nikolaienko, N. Gorobets, E.V. Van der Eycken, N. Kolos, Eur. J. Org. Chem. 24, 5364 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Sheng, A. Larsen, B.D. Heuberger, J. Craig Blain, J.W. Szostak, J. Am. Chem. Soc. 136, 13916 (2014)CrossRefGoogle Scholar
  27. 27.
    G.A. Hudson, R.J. Bloomingdale, B.M. Znosko, RNA 19, 1474 (2013)CrossRefGoogle Scholar
  28. 28.
    R. Hassanien, S.A. Al-Said, L. Siller, R. Little, N.G. Wright, A. Houlton, B.R. Horrocks, Nanotechnology 23, 075601 (2012)CrossRefGoogle Scholar
  29. 29.
    K. Giannousi, G. Sarafidis, S. Mourdikoudis, A. Pantazaki, C. Dendrinou-Samara, Inorg. Chem. 53, 9657 (2014)CrossRefGoogle Scholar
  30. 30.
    L. Han, Y.X. Bu, Phys. Chem. Chem. Phys. 13, 5906 (2011)CrossRefGoogle Scholar
  31. 31.
    H.Y. Liu, G.Q. Li, H.Q. Ai, J.L. Li, Y.X. Bu, J. Phys. Chem. C 115, 22547 (2011)CrossRefGoogle Scholar
  32. 32.
    L. Han, H.F. Li, R.I. Cukier, Y.X. Bu, J. Phys. Chem. B 113, 4407 (2009)CrossRefGoogle Scholar
  33. 33.
    J. Zhao, L. Han, H.F. Yang, J.X. Liu, Y.X. Bu, Chem. Phys. Chem. 13, 3293 (2012)CrossRefGoogle Scholar
  34. 34.
    G.Q. Li, H.Y. Liu, X.H. Chen, L.B. Zhang, Y.X. Bu, J. Phys. Chem. C 115, 2855 (2011)CrossRefGoogle Scholar
  35. 35.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  36. 36.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  37. 37.
    Gaussian 09 (Revision B.01), M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Men-nucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox. Gaussian, Inc., Wallingford, CT (2010)Google Scholar
  38. 38.
    W.R. Wadt, P.J. Hay, J. Chem. Phys. 82, 284 (1985)CrossRefGoogle Scholar
  39. 39.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985)CrossRefGoogle Scholar
  40. 40.
    S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)CrossRefGoogle Scholar
  41. 41.
    D.W. Schwenke, D.G. Truhlar, J. Chem. Phys. 82, 2418 (1985)CrossRefGoogle Scholar
  42. 42.
    J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd edn. (Gaussian Inc, Pittsburgh, 1996)Google Scholar
  43. 43.
    J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980)CrossRefGoogle Scholar
  44. 44.
    A.E. Reed, F. Weinhold, J. Chem. Phys. 78, 4066 (1983)CrossRefGoogle Scholar
  45. 45.
    A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)CrossRefGoogle Scholar
  46. 46.
    T. Lu, F. Chen, J. Comput. Chem. 33, 580 (2012)CrossRefGoogle Scholar
  47. 47.
    I. Mayer, Chem. Phys. Lett. 97, 270 (1983)CrossRefGoogle Scholar
  48. 48.
    E. Matito, J. Poater, M. Solà, M. Duran, P. Salvador, J. Phys. Chem. A 109, 9904 (2005)CrossRefGoogle Scholar
  49. 49.
    I. Mayer, Chem. Phys. Lett. 544, 83 (2012)CrossRefGoogle Scholar
  50. 50.
    A. Ebrahimi, M. Habibi, H.R. Masoodi, A.R. Gholipour, Chem. Phys. 355, 67 (2009)CrossRefGoogle Scholar
  51. 51.
    H. Fallah-Bagher-Shaidaei, C.S. Wannere, C. Corminboeuf, R. Puchta, P.R. Schleyer, Org. Lett. 8, 863 (2006)CrossRefGoogle Scholar
  52. 52.
    Z. Chen, C.S. Wannere, C. Corminboeuf, R. Puchta, P. von Ragué Schleyer, Chem. Rev. 105, 3842 (2005)CrossRefGoogle Scholar
  53. 53.
    L. Pauling, J. Chem. Phys. 4, 673 (1936)CrossRefGoogle Scholar
  54. 54.
    A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)CrossRefGoogle Scholar
  55. 55.
    J. Poater, M. Duran, M. Solà, B. Silvi, Chem. Rev. 105, 3911 (2005)CrossRefGoogle Scholar
  56. 56.
    X. Xia, W. Hu, Y. Shao, J. Phys. Chem. C 119, 8349 (2015)CrossRefGoogle Scholar
  57. 57.
    R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 109, 8128 (1998)CrossRefGoogle Scholar
  58. 58.
    C.A. Guido, P. Cortona, B. Mennucci, C. Adamo, J. Chem. Theory Comput. 9, 3118 (2013)CrossRefGoogle Scholar
  59. 59.
    T.L. Bahers, C. Adamo, I. Ciofini, J. Chem. Theory Comput. 7, 2498 (2011)CrossRefGoogle Scholar
  60. 60.
    A. Mayr, M.P.Y. Yu, V.W.-W. Yam, J. Am. Chem. Soc. 121, 1760 (1999)CrossRefGoogle Scholar
  61. 61.
    L. Petit, C. Adamo, N. Russo, J. Phys. Chem. B 109, 12214 (2005)CrossRefGoogle Scholar
  62. 62.
    Y.-X. Zhang, X. Cai, D.-D. Qi, P. Yao, Y.-Z. Bian, J.-Z. Jiang, Chem. Phys. Chem. 9, 781 (2008)CrossRefGoogle Scholar
  63. 63.
    A.L. Sobolewski, W. Domcke, Eur. Phys. J. D 20, 369 (2002)CrossRefGoogle Scholar
  64. 64.
    H.B. Liu, J.M. Gao, S.R. Lynch, Y.D. Saito, L. Maynard, E.T. Kool, Science 302, 868 (2003)CrossRefGoogle Scholar
  65. 65.
    N. Lu, H. Wang, Dalton Trans. 42, 13931 (2013)CrossRefGoogle Scholar
  66. 66.
    N. Lu, L. Meng, D. Chen, G. Zhang, J. Phys. Chem. A 116(1), 670 (2012)CrossRefGoogle Scholar
  67. 67.
    N. Lu, L. Meng, D. Chen, G. Zhang, J. Mol. Catal. A: Chem. 339(1–2), 99 (2011)CrossRefGoogle Scholar
  68. 68.
    F. Weinhold, C.R. Landis, Chem. Educ. Res. Pract. 2, 91 (2001)CrossRefGoogle Scholar
  69. 69.
    F. Weinhold, C.R. Landis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective (Cambridge University Press, New York, 2005)CrossRefGoogle Scholar
  70. 70.
    M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999)CrossRefGoogle Scholar
  71. 71.
    C. Adamo, J. Barone, J. Chem. Phys. 110, 6158 (1999)CrossRefGoogle Scholar
  72. 72.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396-E (1997)CrossRefGoogle Scholar
  73. 73.
    A.D. Quartarolo, N. Russo, E. Sicilia, F. Lelj, J. Chem. Theory Comput. 3, 860 (2007)CrossRefGoogle Scholar
  74. 74.
    L. Petit, A. Quartarolo, C. Adamo, N. Russo, J. Phys. Chem. B 110, 2398 (2006)CrossRefGoogle Scholar
  75. 75.
    M. Pavelka, M. Simanek, J. Sponer, J.V. Burda, J. Phys. Chem. A 110, 4795 (2006)CrossRefGoogle Scholar
  76. 76.
    F.A. Cotton, X.J. Feng, D.J. Timmons, Inorg. Chem. 37, 4066 (1998)CrossRefGoogle Scholar
  77. 77.
    R. Clerac, F.A. Cotton, L.M. Daniels, J.D. Gu, C.A. Murillo, H.C. Zhou, Inorg. Chem. 39, 4488 (2000)CrossRefGoogle Scholar
  78. 78.
    K. Singh, J.R. Long, P. Stavropoulos, J. Am. Chem. Soc. 119, 2942 (1997)CrossRefGoogle Scholar
  79. 79.
    H.L. Hermann, G. Boche, P. Schwerdtfeger, Chem.-Eur. J. 7, 5333 (2001)CrossRefGoogle Scholar
  80. 80.
    J.M. Zhang, R.I. Cukier, Y.X. Bu, J. Phys. Chem. B 111, 8335 (2007)CrossRefGoogle Scholar
  81. 81.
    A.H. Lee, E.T. Kool, J. Am. Chem. Soc. 127, 3332 (2005)CrossRefGoogle Scholar
  82. 82.
    A. Okamoto, K. Tanaka, I. Saito, J. Am. Chem. Soc. 125, 5066 (2003)CrossRefGoogle Scholar
  83. 83.
    M.H. Baik, J.S. Silverman, I.V. Yang, P.A. Ropp, V.A. Szalai, W.T. Yang, H.H. Thorp, J. Phys. Chem. B 105, 6437 (2001)CrossRefGoogle Scholar
  84. 84.
    F. Gervasio, M. Boero, M. Parrinello, Angew. Chem. Int. Ed. 45, 5606 (2006)CrossRefGoogle Scholar
  85. 85.
    H. Wang, J.P. Lewis, O.F. Sankey, Phys. Rev. Lett. 93, 016401 (2004)CrossRefGoogle Scholar
  86. 86.
    J.P. Lewis, T.E. Cheatham, E.B. Starikov, H. Wang, O.F. Sankey, J. Phys. Chem. B 107, 2581 (2003)CrossRefGoogle Scholar
  87. 87.
    R. Endres, D. Cox, R. Singh, Rev. Mod. Phys. 76, 195 (2004)CrossRefGoogle Scholar
  88. 88.
    M. Fuentes-Cabrera, B. Sumpter, J. Wells, J. Phys. Chem. B 109, 21135 (2005)CrossRefGoogle Scholar
  89. 89.
    M. Fuentes-Cabrera, B. Sumpter, P. Lipkowski, J. Wells, J. Phys. Chem. B 110, 6379 (2006)CrossRefGoogle Scholar
  90. 90.
    A. Dreuw, M. Head-Gordon, Chem. Rev. 105, 4009 (2005)CrossRefGoogle Scholar
  91. 91.
    L. Jensen, N. Govind, J. Phys. Chem. A 113, 9761 (2009)CrossRefGoogle Scholar
  92. 92.
    M.J.G. Peach, P. Benfield, T. Helgaker, D.J. Tozer, J. Chem. Phys. 128, 044118 (2008)CrossRefGoogle Scholar
  93. 93.
    A. Alemayehu, J. Conradie, A. Ghosh, Eur. J. Inorg. Chem. 12, 1857 (2011)CrossRefGoogle Scholar
  94. 94.
    C. Adamo, V. Barone, Chem. Phys. Lett. 330, 152 (2000)CrossRefGoogle Scholar
  95. 95.
    F.A. Cotton, C.Y. Liu, C.A. Murillo, D. Villagran, X. Wang, J. Am. Chem. Soc. 125, 13564 (2003)CrossRefGoogle Scholar
  96. 96.
    L. Han, H.F. Yang, J. Zhao, Y.X. Bu, J. Phys. Chem. C 116, 23214 (2012)CrossRefGoogle Scholar
  97. 97.
    F.Y. Zhang, X.Y. Song, Y.X. Bu, J. Phys. Chem. C 119, 27930 (2015)CrossRefGoogle Scholar
  98. 98.
    E. Steiner, P.W. Fowler, J. Phys. Chem. A 105, 9553 (2001)CrossRefGoogle Scholar
  99. 99.
    S. Manzetti, T. Lu, J. Phys. Org. Chem. 26, 473 (2013)CrossRefGoogle Scholar
  100. 100.
    M. Giambiagi, M.S. de Giambiagi, C.D. dos Santos Silva, A.P. de Figueiredo, Phys. Chem. Chem. Phys. 2, 3381 (2000)CrossRefGoogle Scholar
  101. 101.
    R. Ponec, P. Bultinck, A.G. Saliner, J. Phys. Chem. A 109, 6606 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.College of Chemistry and Material ScienceShandong Agricultural UniversityTaianPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringShandong UniversityJinanPeople’s Republic of China
  3. 3.Department of WeldingTaian Technician InstituteTaianPeople’s Republic of China

Personalised recommendations