Advertisement

Journal of Mathematical Chemistry

, Volume 55, Issue 6, pp 1278–1300 | Cite as

Zero interval limit perturbation expansion for the spectral entities of Hilbert-Schmidt operators combined with most dominant spectral component extraction: convergence and confirmative implementations

Original Paper

Abstract

This is the second one of two companion papers. We have focused on the spectral entity determination in the first paper where we have considered the Hilbert-Schmidt and Pincherle-Goursat kernels. The basic idea has been the development of a perturbation expansion around the zero interval limit therein. We have emphasized on the case of most dominant eigenvalue and corresponding eigenfunction by taking the half-interval length as the perturbation parameter after universalizing the given (finite) interval of the integral operator. The basic issues in the formulation of the perturbation expansion and certain technicalities were kept as the main theme of the paper in the first companion paper. This second companion paper, however, has been designed to focus on the convergence discussions and confirmative implementations. It also presents a numerical comparison between proposed method and various well known approximation methods residing in scientific literature.

Keywords

Hilbert-Schmidt integral operators Perturbation expansions Eigenvalues Eigenfunctions Operator norm Function norm 

Mathematics Subject Classification

45B05 45F10 45P05 47A55 65D15 

References

  1. 1.
    H.H. Gan, B.C. Eu, J. Chem. Phys. (1993). doi: 10.1063/1.466106 Google Scholar
  2. 2.
    E. Cancés, B. Mennucci, J. Math. Chem. (1998). doi: 10.1023/A:1019133611148 Google Scholar
  3. 3.
    T. Buchukuri, O. Chkadua, D. Natroshvili, Integr. Equ. Oper. Theory (2009). doi: 10.1007/s00020-009-1694-x Google Scholar
  4. 4.
    S. Arnrich, P. Bräuer, G. Kalies, J. Math. Chem (2015). doi: 10.1007/s10910-015-0531-5 Google Scholar
  5. 5.
    S. Tuna, M. Demiralp, in AIP Conference Proceeding 1702, 170009 (2015). doi: 10.1063/1.4938944
  6. 6.
    B. Tunga, M. Demiralp, J. Math. Chem. (2010). doi: 10.1007/s10910-010-9714-2 Google Scholar
  7. 7.
    M.A. Tunga, M. Demiralp, J. Math. Chem. (2011). doi: 10.1063/1.3637819 Google Scholar
  8. 8.
    S. Tuna, B. Tunga, J. Math. Chem. (2012). doi: 10.1007/s10910-013-0179-y Google Scholar
  9. 9.
    M.A. Tunga, M. Demiralp, J. Math. Chem. (2013). doi: 10.1007/s10910-013-0228-6 Google Scholar
  10. 10.
    M.A. Tunga, Int. J. Comp. Math. (2014). doi: 10.1080/00207160.2014.941825 Google Scholar
  11. 11.
    E. Korkmaz Özay, M. Demiralp, J. Math. Chem. (2014) doi: 10.1007/s10910-014-0396-z
  12. 12.
    M.A. Tunga, Int. J. Comput. Math. (2015). doi: 10.1080/00207160.2014.941825
  13. 13.
    I.M. Sobol, Math. Model. Comput. Exp. 1, 407–414 (1993)Google Scholar
  14. 14.
    H. Rabitz, Ö.F. Alış, J. Shorter, K. Shim, Comput. Phys. Commun. (1999). doi: 10.1016/S0010-4655(98)00152-0
  15. 15.
    Ö.F. Alış, H. Rabitz, J. Math. Chem. (2001). doi: 10.1023/A:1010979129659 Google Scholar
  16. 16.
    M.A. Tunga, M. Demiralp, App1. Math. Comp. (2005). doi: 10.1016/j.amc.2004.06.056
  17. 17.
    M.A. Tunga, M. Demiralp, Int. J. Comput. Math. (2008). doi: 10.1080/00207160701576095
  18. 18.
    S. Tuna, M. Demiralp, Mathematics (2017). doi: 10.3390/math5010002 Google Scholar
  19. 19.
    F.G. Tricomi, Integral Equations (Interscience Publishers, New York, 1957)Google Scholar
  20. 20.
    L.V. Ahlfors, Complex Analysis, 3rd edn. (McGraw-Hill, New York, 1978)Google Scholar
  21. 21.
    T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, Berlin, Heidelberg, 1995)Google Scholar
  22. 22.
    E.J. Hinch, Perturbation Methods (Cambridge University Press, Cambridge, 1991)CrossRefGoogle Scholar
  23. 23.
    M.H. Holmes, Introduction to Perturbation Methods (Springer-Verlag, New York, 1995)CrossRefGoogle Scholar
  24. 24.
    B.R. Hunt, R.L. Lipsman, J.M. Rosenberg, K.R. Coombes, J.E. Osborn, G.J. Stuck, A Guide to MATLAB: For Beginners and Experienced Users, 2nd edn. (Cambridge University Press, New York, 2006)CrossRefGoogle Scholar
  25. 25.
    F.B. Hildebrand, Introduction to Numerical Analysis, 2nd edn. (Dover Publications, Inc., New York, 1987)Google Scholar
  26. 26.
    G.H. Golub, J.H. Welsch, Calculation of Gauss quadrature rules. Math. Comput. 23, 221–230 (1969)Google Scholar
  27. 27.
    F. Chatelin, Spectral Approximation of Linear Operators (SIAM, Philadelphia, 2011)Google Scholar
  28. 28.
    L. Fox, Romberg integration for a class of singular integrands. Comput. J. 10, 87–93 (1967)Google Scholar
  29. 29.
    M. Demiralp, S. Tuna, Zero Interval Limit Perturbation Expansion for the Spectral Entities of Hilbert-Schmidt Operators Combined with Most Dominant Spectral Component Extraction: Formulation and Certain Technicalities. J. Math. Chem. (2017). doi: 10.1007/s10910-017-0739-7

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Informatics Instituteİstanbul Technical UniversityMaslakTurkey

Personalised recommendations