Advertisement

Journal of Mathematical Chemistry

, Volume 55, Issue 7, pp 1392–1406 | Cite as

Convergence of Newton’s method under Vertgeim conditions: new extensions using restricted convergence domains

  • I. K. Argyros
  • J. A. Ezquerro
  • M. A. Hernández-Verón
  • Á. A. Magreñán
Original Paper

Abstract

We present new sufficient convergence conditions for the semilocal convergence of Newton’s method to a locally unique solution of a nonlinear equation in a Banach space. We use Hölder and center Hölder conditions, instead of just Hölder conditions, for the first derivative of the operator involved in combination with our new idea of restricted convergence domains. This way, we find a more precise location where the iterates lie, leading to at least as small Hölder constants as in earlier studies. The new convergence conditions are weaker, the error bounds are tighter and the information on the solution at least as precise as before. These advantages are obtained under the same computational cost. Numerical examples show that our results can be used to solve equations where older results cannot.

Keywords

Newton’s method Recurrent functions Hölder continuity Semilocal convergence Integral equation Differential equation 

Mathematics Subject Classification

65H10 65G99 65J15 47H17 49M15 

References

  1. 1.
    I.K. Argyros, Remarks on the convergence of Newton’s method under Hölder continuity conditions. Tamkang J. Math. 23, 269–277 (1992)Google Scholar
  2. 2.
    I.K. Argyros, Concerning the “terra incognita” between convergence regions of two Newton methods. Nonlinear Anal. 62, 179–194 (2005)Google Scholar
  3. 3.
    I.K. Argyros, S. Hilout, On the weakening of the convergence of Newton’s method using recurrent functions. J. Complex. 25(6), 530–543 (2009)Google Scholar
  4. 4.
    I.K. Argyros, S.K. Khattri, Some development for Newton’s method under mild differentiability conditions. J. Nonlinear Anal. Optim. 5(2), 81–90 (2014)Google Scholar
  5. 5.
    F. Cianciaruso, E. De Pascale, Newton–Kantorovich aproximations when the derivative is Hölderian: old and new results. Numer. Funct. Anal. Optim. 24, 713–723 (2003)Google Scholar
  6. 6.
    F. Cianciaruso, A further journey in the “terra incognita” of the Newton–Kantorovich method. Nonlinear Funct. Anal. Appl. 15, 173–183 (2010)Google Scholar
  7. 7.
    E. De Pascale, P.P. Zabrejko, Convergence of the Newton–Kantorovich method under Vertgeim conditions: a new improvement. Z. Anal. Anwendvugen 17, 271–280 (1998)Google Scholar
  8. 8.
    M.A. Hernández, The Newton method for operators with Hölder continuous first derivative. J. Optim. Theory Appl. 109, 631–648 (2001)Google Scholar
  9. 9.
    D. Jain, Families of Newton-like method with fourth-order convergence. Int. J. Comput. Math. 90(5), 1072–1082 (2013)Google Scholar
  10. 10.
    L.V. Kantorovich, G.P. Akilov, Functional Analysis (Pergamon Press, Oxford, 1982)Google Scholar
  11. 11.
    H.B. Keller, Numerical Methods for Two-Point Boundary Value Problems (Dover Publications, New York, 1992)Google Scholar
  12. 12.
    J.V. Lysenko, Conditions for the convergence of the Newton–Kantorovich method for nonlinear equations with Hölder linearizations. Dokl. Akad. Nauk BSSR 38, 20–24 (1994). (in Russian)Google Scholar
  13. 13.
    J.M. Ortega, The Newton–Kantorovich theorem. Am. Math. Mon. 75, 658–660 (1968)Google Scholar
  14. 14.
    J. Rokne, Newton’s method under mild differentiability conditions with error analysis. Numer. Math. 18, 401–412 (1972)Google Scholar
  15. 15.
    B.A. Vertgeim, On conditions for the applicability of Newton’s method. Dokl. Akad. Nauk SSSR 110, 719–722 (1956). (in Russian)Google Scholar
  16. 16.
    B.A. Vertgeim, On some methods for the approximate solution of nonlinear functional equations in Banach spaces. Uspekhi Mat. Nauk 12, 166–169 (1957) (in Russian); English transl.: Am. Math. Soc. Transl., 16, 378–382 (1960)Google Scholar
  17. 17.
    P.P. Zabrejko, D.F. Nguen, The majorant method in the theory of Newton–Kantorovich approximations and the Pták error estimates. Numer. Funct. Anal. Optim. 9, 671–684 (1987)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • I. K. Argyros
    • 1
  • J. A. Ezquerro
    • 2
  • M. A. Hernández-Verón
    • 2
  • Á. A. Magreñán
    • 3
  1. 1.Department of Mathematics SciencesCameron UniversityLawtonUSA
  2. 2.Department of Mathematics and ComputationUniversity of La RiojaLogroñoSpain
  3. 3.Escuela Superior de Ingeniería y TecnologíaInternational University of La RiojaLogroñoSpain

Personalised recommendations